

Curve Fitting:
Fertilizer, Fonts, and Ferraris
What's the difference between modeling and curve fitting, and what are polynomials used for, anyway?
$32^{\text {nd }}$ AMATYC Annual Conference
November 3, 2006
Cincinnati, Ohio
atherine Yoshiwara Bruce Yoshiwara Los Angeles Pierce College

Typical Quadratic Models

-Projectile and other motion problems from physics
-Problems involving area or the Pythagorean
Theorem
-Revenue curves:
Total revenue $=($ number of items) (price per item)

Revenue from theater tickets

$x=$ number of $\$.25$ price increases
$p=$ price per ticket
$=5.00-.25 x$
$n=$ number of tickets
$=100+10 x$
Revenue $=p n$
$=(5.00-.25 x)(100+10 x)$

Rate of growth in a logistic model

$d P / d t=k P(L-P)$
where P is the population at time t, and L is the carrying capacity.
Or, for classes before calculus,

$$
r=k P(L-P)
$$

Logistic growth

Parus Major
Day

0	2	4	6	8	10	12	14

 Growth rate
Parus Caeruleus
Day

| 12 | 4 | 6 | 8 | 10 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | | | 1.3 | 2.3 | 4.2 | 6.4 | 8.3 | 10 | 10.7 | 11.2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Growth rate | 0.4 | 0.9 | 1.2 | 0.9 | 0.9 | 0.5 | 0.4 | 0.1 | |

Logistic growth (continued)

For each species, plot the rate of growth against weight in grams. What type of curve does the growth rate graph appear to be?

Maximum sustainable yield

Commercial fishermen rely on a steady supply of fish in their area. To avoid overfishing, they adjust their harvest to the size of the population. The equation

$$
r=0.0001 x(4000-x)
$$

gives the annual rate of growth, in tons per year, of a fish population of biomass x tons.

Rate of growth of a fish population

What is the significance of the intercepts in terms of the fis population?

What is the significance of the vertex?
For what values of x does the fish population decrease rather than increase?

Maximum sustainable yield

Suppose that 300 tons of fish are harvested each year What sizes of biomass will remain stable from year to year?

Greenshield's model for traffic flow

Traffic flow is a quadratic function of d, given by

Models for traffic flow

$$
r=d s
$$

traffic flow $=$ (traffic density) (average speed) cars/hour $=($ cars $/ \mathrm{mile})(\mathrm{miles} / \mathrm{hr})$

Greenshield's model for traffic flow

$$
s=s_{f}\left(1-d / d_{j}\right)
$$

Greenberg's model for traffic flow

$$
s=\left(s_{f} / 2\right) \ln \left(d_{j} / d\right)
$$

Greenshield's model for traffic flow

Assumes that the average speed s of cars on a highway is a linear function of traffic density

$$
s=s_{f}\left(1-d / d_{j}\right)
$$

where s_{f} is the free-flow speed and d_{j} is the maximum (jam) density.

Two models for traffic flow

Photosynthesis

Crop yield as a function of fertilizer

$y=2.158+0.019 x-0.000132 x^{2}$

But are these models or just examples of curvefitting?

Two types of models

Mechanistic models provide insight into the
chemical, biological, or physical process thought to govern the phenomenon under study. The parameters derived are estimates of real system properties.
Empirical models simply describe the gener shape of the data. The parameters do not necessarily correspond to a chemical or physical process. Empirical m
predictive value.

Choosing a model: A quote from GraphPad Software
"Choosing a model is a scientific decision. You should base your choice on your understanding of chemistry or physiology (or genetics, etc.). The choice should not be based solely on the shape of the graph."

Some programs...automatically fit data to undreds or thousands of equations and then resent you with the equation(s) that fit the data best... You will not be able to interpre he best-fit values of the variables, and the results are unlikely to be useful for data analysis"
(Fitting Models to Biological Data Using inear and Nonlinear Regression, Motulsky \& Christopoulos, GraphPad Software, 2003)

Crop yield as a cubic function of

 fertilizer rate

Cost function for higher education

 in Australia

Visitor impact at tourist sites in New Zealand

 http://www.landcareresearch.co.nz/research/sustain_business/tourism/
documents/tourist_flow_data.pdf

Polynomial curve fitting

Although higher-degree polynomials typically do not provide meaningful models, they are useful fo approximating continuous curves
Polynomials are easy to evaluate, their graphs are completely smooth, and their derivatives and integrals are again polynomials.

Lagrange polynomial through 2 points

Font design

Lagrange interpolation

Given any $n+1$ points in the plane with distinct x-coordinates, there is a polynomial of degree at most n whose graph passes through those points.

Lagrange polynomial through 3 points

$\left(x-x_{1}\right)\left(x-x_{2}\right)$
$\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right) \cdot y_{3}$

Osculating polynomials

An osculating polynomial agrees with the function and all its derivatives up to order m at n points in a given interval.

Hermite polynomials are osculating polynomials of order $m=1$, that is, they agree with the function and its first derivative at each point.

Piecewise interpolation

Many of the most effective interpolation technique use piecewise cubic Hermite polynomials.

There is a trade-off between smoothness and local monotonicity or shape-preservation.

Piecewise polynomials fits

http://www.mathworks.com/moler/interp/pdf

Parametric approximations

To approximate more general curves, we can equations.

Bezier curves

Bezier curves are the most frequently used interpolating curves in computer graphics.

They were developed in the 1960s by Paul d Casteljau, an engineer at Citroen, and independently by Pierre Bezier at Renaul.

Linear Bezier curves

The linear Bezier curve through two points P_{0} and P_{1} is defined by

$$
P(t)=(1-t) P_{0}+t P_{1}, \quad 0 \leq t \leq 1
$$

It is just the line segment joining P_{0} and P_{1}.

Quadratic Bezier curves

Hermite curve with 2 control points

We want x (and y) to be cubic in t

$$
x(t)=a t^{3}+b t^{2}+c t+d
$$

satisfying $x(0)=x_{0}, x(1)=x_{1}, x^{\prime}(0)=\alpha_{0}, x^{\prime}(1)=\alpha_{1}$

Hermite curve with 2 control points

$$
\begin{aligned}
x= & {\left[2\left(x_{0}-x_{1}\right)+\left(\alpha_{0}+\alpha_{1}\right)\right] t^{3} } \\
& +\left[3\left(x_{1}-x_{0}\right)-\left(\alpha_{1}+2 \alpha_{0}\right)\right] t^{2}+\alpha_{0} t+x_{0} \\
y= & {\left[2\left(y_{0}-y_{1}\right)+\left(\beta_{0}+\beta_{1}\right)\right] t^{3} } \\
\quad & {[2(v)}
\end{aligned}
$$

$$
+\left[3\left(y_{1}-y_{0}\right)-\left(\beta_{1}+2 \beta_{0}\right)\right] t^{2}+\beta_{0} t+x_{0}
$$

Curves with 2 control points

$$
x=a t^{3}+b t^{2}+c t+d
$$

Hermite $a=2\left(x_{0}-x_{1}\right)+\left(\alpha_{0}-\alpha_{1}\right)$ $b=3\left(x_{1}-x_{0}\right)-\left(\alpha_{1}+2 \alpha_{0}\right)$
$a=2\left(x_{0}-x_{1}\right)+\mathbf{3}\left(\alpha_{0}-\alpha_{1}\right)$ $b=3\left(x_{1}-x_{0}\right)-3\left(\alpha_{1}+2 \alpha_{0}\right)$
$c=\alpha_{0}$
$d=x_{0}$

Cubic Bezier curves

A cubic Bezier curve can be defined by two endpoints, P_{0} and P_{3} and control points P_{1} and P_{2} as follows.

$P(t)=(1-t)^{3} P_{0}+3 t(1-t)^{2} P_{1}+3 t^{2}(1-t) P_{2}+t^{3} P_{3}$

Bernstein polynomials

The Bernstein polynomials of degree n are
defined by defined by

$$
B_{i, n}(t)=\binom{n}{i} t^{i}(1-t)^{n-i}
$$

Bernstein polynomials of degree 1

The Bernstein polynomials of degree 1 are

Bernstein polynomials

- Form a basis for polynomials of degree n
- Form a partition of unity, that is, the sum of
the Bernstein polynomials of degree n is 1 .
- When a Bezier polynomial is expressed in terms of the Bernstein basis, the coefficient of the basis elements are just the points P_{0} through P_{n}.

Bernstein polynomials of degree 2

The Bernstein polynomials of degree 2 are

Bernstein polynomials of degree 3

The Bernstein polynomials of degree 3 are

