

• ASAP

- MAP Intermediate Algebra
- MOD Algebra 1

ASAP

- Algebra Success At Pierce get through your Algebra ASAP!
- 14 unit learning community in 1 semester, for total immersion in Math
- o 10 units of Algebra 1 and 2 blended together
- 3 unit College Success course
- o 1 unit Directed Study study skills

WHO CAN TAKE ASAP? Students who place at Algebra 1 level Students who passed Prealgebra Students who place at Algebra 2 level but want to review

• Students who passed Algebra 1 but want to refresh Algebra 1 (audit) and take Algebra 2

MATERIALS FOR ASAP

- Custom book blends Algebra 1 and 2, minimizing repetition
- Directed learning activities stress critical thinking
- Homework includes skills practice problems and applications
- Clicker questions explore concepts
- Study Skills booklet (for directed study)

	Math 125 S	uccess	
ASAP Status	Not Successful	Successful	Grand Total
SAP	50	100	150
	33.33%	66.67%	100.00%
Non-ASAP (Alg 2)	2196	2502	4698
	46.74%	53.26%	100.00%
Fotal Count	2246	2602	4848
Total Proportion	46.33%	53.67%	100.00%
P-hat = 66.67% is Z = 3.19 , alpha But Note: The p BOTH Algebra 1	s significantly abo = .001 robability of a stu and Algebra 2, as	ve P = 53.67% dent making i separate cour	t through ses, is

Math 125 Retention Not						
ASAP Status	Retained	Retained	Grand Total			
ASAP	22	128	150			
	14.67%	85.33%	100.00%			
Non-ASAP	1015	3683	4698			
	21.60%	78.40%	100.00%			
Total Count Total	1037	3811	4848			
Proportion	21.39%	78.61%	100.00%			

$\begin{array}{l} MAP-M \text{ODELING WITH} \\ A \text{LGEBRA} \ P \text{ROJECT} \end{array}$

- ${\color{blue}{\circ}}$ Algebra 2
- Features Discovery/ Directed Learning Activities
- Instructors minimize lecturing and encourage group work (try to get the students to do more work than you do!)
- In-class tutor (funded by BSI funds)
- 4 sections running this semester

MAP MATERIALS

- Discovery/ Directed learning activities "struggling" is a good thing
- Critical thinking stressed with real world problems and data
- Videos for skills problems
- Skills Practice problems and Reading questions scored in WebWork
- Concept questions with clickers

variable. (Hint: What is the initial value for each model?)

c. In which city do taxis charge the lowest fare for a 5 mile ride?

RQ4 True or False.

- **a.** The notation f(t) indicates the product of f and t.
- **b.** If y = f(x), then f(x) gives the value of the input variable
- c. If Q is a function of M, we may write M = f(Q).
 d. In the equation d = g(n), the letters d, g, and n are
- variables.

RQ2 True or False.

- **a.** An exponential function $f(x) = b^x$ is always positive.
- **b.** The function $f(x) = ab^x$ has a horizontal asymptote at y = 0.
- c. The value of b determines how rapidly the graph of $f(x) = ab^x$ increases or decreases.
- **d.** The graph of $f(x) = ab^x$ is decreasing if b < 0.

Examples of Concept Questions Lesson 11 1. What are the *x*-intercepts of the graph of y = 3(2x - 7)(x + 2)? a. $\frac{7}{2}$ and -2 b. $-\frac{7}{2}$ and 2c. $3, \frac{7}{2}$ and -2 d. $3, -\frac{7}{2}$ and 22. What happens to the *x*-intercepts when you multiply the right side of $y = ax^2 + bx + c$ by 3? a. The are tripled b. They are divided by 3 c. They move 3 units to the right d. They are unchanged

4. Which statement is true?

- a. All rectangles with the same perimeter have the same area.
- **b.** The solutions of x(18-x)=80 are x=80 and x=18. **c.** If the perimeter of a rectangle is 20 cm, the largest area it can
- have is 20 sq cm. d. If you know the x-intercepts of the graph of $y = x^2 + bx + c$, you can write it in factored form.

MAP SUCCESS AND RETENTION FALL '09 – SPRING '10

• MAP success = 47% compared to 53% overall (under but not statistically significant)

• MAP retention = 71% compared to 78% overall (under but not statistically significant)

MAP CHALLENGES

- Many students in class are not level prepared makes discovery harder than it needs to be.
- More class time is spent on critical thinking activities, less on skills
- Convincing students that the "struggle" of the discovery approach is more effective than the chalk and talk lecture method they are used to.

MOD (MODULARIZED) ALGEBRA 1

- Team taught; 4 sections all run at the same time slot in adjacent rooms
- Mastery of modules (80%) required to move on
- Students move to the appropriate classroom after each Module test.
- Master grade sheet in shared Dropbox

MOD (ALGEBRA 1) STRUCTURE

- Directed learning activities (minimize lecturing)
- Students must have homework portfolio complete to take the Module test
- In-class tutor funded by BSI funds
- Students who complete at least 4 modules out of 9 can complete the course next semester

MOD CHALLENGES

- "Why can't I just get a C?" (Because a C in Algebra 1 results in a fail in Algebra 2!)
- Once students fall behind, they rarely catch up
- Close to half of the students fail module 1 three times. Now what?

MOD SUCCESSES

- Every student is accounted for
- Students filtered into the on-track classes create the best classroom environment you'll ever see
- Students filtered into the slow track actually like the attention and not feeling inadequate next to high achieving students.
- Every student that masters all 9 modules is "gold" on the MET

What Works: ASAP

- 1. Repeated material in elementary and intermediate algebra is eliminated
- 2. Students focus intensively and exclusively on math
- 3. Community building through SI and counseling support
- 4. Student attrition over two semesters is diminished

What Works: MAP

- 1. Reading Questions encourage students to read before coming to class
- 2. Activities and Concept Questions engage students
- 3. Focus on applications increases writing ability and critical thinking without detracting from mastery of skills (but it takes time!)

What Works: MOD

- 1. Mastery learning does not allow students to ignore topics
- 2. Many students benefit from a slower pace, in fact, most cannot finish Algebra 1 in one semester
- 3. Students learn more efficiently in a more uniform group
- 4. Self-paced learning is not effective: developmental students need more structure

Challenges

- 1. Traditional courses are "easier"
- 2. Scheduling in self-paced courses is tricky
- 3. Instructors need to learn new teaching styles, grade more papers, and collaborate with colleagues
- 4. Discovery learning is difficult when students are not level-ready
- 5. Holes in very basic conceptual understanding hamper ALL students more than lack of skills

WRAP UP

•Let's hear about <u>your</u> course redesigns!

PIERCE COLLEGE MATH COURSE REDESIGNS

o Bob Martinez, Math faculty <u>martinrm@piercecollege.edu</u>

o Kathy Yoshiwara, Math faculty yoshiwka@piercecollege.edu

• For info about the materials contact Kathy Yoshiwara, Math faculty <u>yoshiwka@piercecollege.edu</u> or visit online <u>faculty.piercecollege.edu/yoshibw/ka/m125/VideosAndToolkit.htm</u>