

## 3 Math course redesigns at Pierce

- ASAP
- MAP Intermediate Algebra
- MOD Algebra 1


## Who can take AsAP?

- Students who place at Algebra 1 level
- Students who passed Prealgebra
- Students who place at Algebra 2 level but want to review
- 3 unit College Success course
- 1 unit Directed Study - study skills
- Students who passed Algebra 1 but want to refresh Algebra 1 (audit) and take Algebra 2

```
MATERIALS FOR ASAP
- Custom book blends Algebra 1 and 2,
    minimizing repetition
- Directed learning activities stress critical
    thinking
- Homework includes skills practice problems
    and applications
- Clicker questions explore concepts
o Study Skills booklet (for directed study)
```




## SUPPORT FOR ASAP

- 1 Supplemental Instruction leader for each ASAP community ( 5 communities this semester)
- S.I. leaders funded by BSI funds for 13 hours per week -5 hours in the classroom and 8 hours outside running study group sessions
- College success companion course taught by a counselor
- Counselor and Math instructor meet on a regular basis

| SUCCESS OF ASAP: SPRING '08-SPRING '10 |  |  |  |
| :---: | :---: | :---: | :---: |
| Math 125 Success |  |  |  |
| ASAP Status | Not Successful | Successful | Grand Total |
| ASAP | 50 | 100 | 150 |
|  | 33.33\% | 66.67\% | 100.00\% |
| Non-ASAP (Alg 2) | 2196 | 2502 | 4698 |
|  | 46.74\% | 53.26\% | 100.00\% |
| Total Count | 2246 | 2602 | 4848 |
| Total Proportion | 46.33\% | 53.67\% | 100.00\% |
| P-hat $=\mathbf{6 6 . 6 7 \%}$ is significantly above $\mathbf{P}=\mathbf{5 3 . 6 7 \%}$ $\mathrm{Z}=3.19$, alpha $=.001$ |  |  |  |
| But Note: The probability of a student making it through BOTH Algebra 1 and Algebra 2, as separate courses, is normally about $25 \%$ |  |  |  |


| Retention in ASAP: Spring '08-Spring '10 |  |  |  |
| :---: | :---: | :---: | :---: |
| ASAP Status | Math 12 <br> Not <br> Retained | Retention <br> Retained | Grand Total |
| ASAP | $\begin{gathered} 22 \\ 14.67 \% \end{gathered}$ | $\begin{gathered} 128 \\ 85.33 \% \end{gathered}$ | $\begin{gathered} 150 \\ 100.00 \% \end{gathered}$ |
| Non-ASAP | $\begin{gathered} 1015 \\ 21.60 \% \\ \hline \end{gathered}$ | $\begin{gathered} 3683 \\ 78.40 \% \end{gathered}$ | $\begin{gathered} 4698 \\ 100.00 \% \end{gathered}$ |
| Total Count Total Proportion | $\begin{gathered} 1037 \\ 21.39 \% \end{gathered}$ | 3811 <br> 78.61\% | $\begin{gathered} 4848 \\ 100.00 \% \\ \hline \end{gathered}$ |
| P-hat $=85.33 \%$ is significantly above the population $\mathrm{P}=78.61 \% \quad \mathrm{z}=2.01 \quad$ alpha $=.022$ |  |  |  |

ASAP MET (Math Exit Test) for
Algebra 2: Spring ’08-SPRING ‘10

| ASAP | Average | 53.3 |
| :--- | :--- | :--- |
|  | S.dev. | 18.8 |
|  | $\mathrm{n}=126$ |  |



ASAP (Algebra 1 \& 2) did as well as Algebra 2 classes in 1 semester

## MAP - MODELING WITH Algebra Project

- Algebra 2
- Features Discovery/ Directed Learning Activities
- Instructors minimize lecturing and encourage group work - (try to get the students to do more work than you do.)
- In-class tutor (funded by BSI funds)
$\bigcirc 4$ sections running this semester


## MAP MATERIALS

- Discovery/ Directed learning activities "struggling" is a good thing
- Critical thinking stressed with real world problems and data
- Videos for skills problems
- Skills Practice problems and Reading questions scored in WebWork
- Concept questions with clickers


## Activity 2 Slope and Linear Models

The taxi fare in three different cities is described below. In each city, you pay an initial charge when you get into the taxi, and then your fare is based on the distance you travel. Each city uses a different distance unit to compute the fare.

| City | Initial <br> Charge | Distance <br> Unit | Charge <br> per Unit |
| :---: | :---: | :---: | :---: |
| Boston | 1.45 | $\frac{1}{8}$ mile | 0.30 |
| Honolulu | 2.25 | $\frac{1}{4}$ mile | 0.75 |
| New York | 2.50 | $\frac{1}{5}$ mile | 0.40 |

a. Compute the charge per mile in each city. (Do not include the initial charge.) In which city do taxis charge the highest mileage rate?
b. Write a linear model for the taxi fare in each city, using miles as the input variable. (Hint: What is the initial value for each model?)
c. In which city do taxis charge the lowest fare for a 5 mile ride?

## Lesson 24 Roots and Radicals

Activity 2 Heart Rate
An animal's heart rate is related to its size or mass, with smaller animals generally having faster heart rates. The heart rates of mammals are given approximately by the power function

$$
H=f(m)=k m^{-1 / 4}
$$

where $m$ is the animal's mass and $k$ is a constant.
a. A typical human male weighs about 70 kilograms and has a resting heart rate of 70 beats per minute. Find the constant of proportionality, $k$, and write a formula for $H$ as a function of $m$
b. Complete the table with the heart rates of the mammals whose masses are given

| Animal | Cat | Wolf | Horse | Polar Bear | Elephant |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Mass (kg) | 4 | 80 | 300 | 800 | 5400 |
| Heart Rate |  |  |  |  |  |



## Examples of Reading Questions

RQ3 What sort of variables can be described by a linear model?
a. Increasing variables
b. Variables that change at a constant rate
c. Variables that describe time
d. Variables that can be graphed

RQ3 Describe the intercept method of graphing
a. Make a table of values and plot the points.
b. Extend the line until it crosses both axes.
c. Solve for $y$ in terms of $x$.
d. Plot the points $(x, 0)$ and $(0, y)$ and draw the line through them.

RQ4 True or False.
a. The notation $f(t)$ indicates the product of $f$ and $t$.
b. If $y=f(x)$, then $f(x)$ gives the value of the input variable.
c. If $Q$ is a function of $M$, we may write $M=f(Q)$.
d. In the equation $d=g(n)$, the letters $d, g$, and $n$ are variables.

RQ2 True or False.
a. An exponential function $f(x)=b^{x}$ is always positive.
b. The function $f(x)=a b^{x}$ has a horizontal asymptote at $y=0$.
c. The value of $b$ determines how rapidly the graph of $f(x)=a b^{x}$ increases or decreases.
d. The graph of $f(x)=a b^{x}$ is decreasing if $b<0$.

## Examples of Concept Questions

## Lesson 11

1. What are the $x$-intercepts of the graph of $y=3(2 x-7)(x+2)$ ?
a. $\frac{7}{2}$ and -2
b. $-\frac{7}{2}$ and 2
c. $3, \frac{7}{2}$ and -2
d. $3,-\frac{7}{2}$ and 2
2. What happens to the $x$-intercepts when you multiply the right side of $y=a x^{2}+b x+c$ by 3 ?
a. The are tripled
b. They are divided by 3
c. They move 3 units to the right
d. They are unchanged
3. If the perimeter of a rectangle is 56 inches and its width is $x$ inches, what is an expression for its length?
a. $56-x$
b. $28-x$
c. $56 x$
d. $\frac{28}{x}$
4. Which statement is true?
a. All rectangles with the same perimeter have the same area.
b. The solutions of $x(18-x)=80$ are $x=80$ and $x=18$.
c. If the perimeter of a rectangle is 20 cm , the largest area it can have is 20 sq cm .
d. If you know the x-intercepts of the graph of $y=x^{2}+b x+c$, you can write it in factored form.

## MAP MET (Math Exit Test) <br> SUCCESS: FALL ’09 - SpRING ‘'10

MAP Intermediate Algebra

|  |  |
| :--- | :--- |
| Average $=$ | 64.23 |
| St.Dev. $=$ | 16.93 |
| $\mathrm{n}=108$ |  |

All Intermediate Algebra
The MAP mean of 64 is
significantly higher than the
Population mean of 53
$z=6.35$
alpha $=0.00003$

| Average $=$ | 52.621 |
| :--- | :--- |
| S.dev. | 17.851 |
| $\mathrm{n}=1533$ |  |

MAP Success and Retention
FALL '09 - Spring ‘10

- MAP success $=47 \%$ compared to $53 \%$ overall (under but not statistically significant)
- MAP retention $=71 \%$ compared to $78 \%$ overall (under but not statistically significant)


## MAP CHALLENGES

- Many students in class are not level prepared makes discovery harder than it needs to be.
- More class time is spent on critical thinking activities, less on skills
- Convincing students that the "struggle" of the discovery approach is more effective than the chalk and talk lecture method they are used to.


## MOD (MODULARIZEd) Algebra 1

- Team taught; 4 sections all run at the same time slot in adjacent rooms
- Mastery of modules (80\%) required to move on
- Students move to the appropriate classroom after each Module test.
- Master grade sheet in shared Dropbox


## MOD (ALGEBRA 1) STRUCTURE

- Directed learning activities (minimize lecturing)
- Students must have homework portfolio complete to take the Module test
- In-class tutor funded by BSI funds
- Students who complete at least 4 modules out of 9 can complete the course next semester


## MOD CHALLENGES

- "Why can't I just get a C?" (Because a C in Algebra 1 results in a fail in Algebra 2!)
- Once students fall behind, they rarely catch up
- Close to half of the students fail module 1 three times. Now what?


## MOD successes

- Every student is accounted for
- Students filtered into the on-track classes create the best classroom environment you'll ever see
- Students filtered into the slow track actually like the attention and not feeling inadequate next to high achieving students.
- Every student that masters all 9 modules is "gold" on the MET


\author{

## What Works: MAP

 <br> 1. Reading Questions encourage students to read <br> before coming to class <br> 2. Activities and Concept Questions engage students <br> 3. Focus on applications increases writing ability and critical thinking without detracting from mastery of skills (but it takes time!)}

## What Works: MOD

1. Mastery learning does not allow students to ignore topics
2. Many students benefit from a slower pace, in fact, most cannot finish Algebra 1 in one semester
3. Students learn more efficiently in a more uniform group
4. Self-paced learning is not effective: developmental students need more structure

## Challenges

## WRAP UP

-Let's hear about your course redesigns!

```
Pierce college Math course
REDESIGNS
- Bob Martinez, Math faculty
martinrm@piercecollege.edu
- Kathy Yoshiwara, Math faculty
yoshiwka@piercecollege.edu
- For info about the materials contact
Kathy Yoshiwara, Math faculty
yoshiwka@piercecollege.edu or visit online
faculty.piercecollege.edu/yoshibw/ka/m125/VideosAndToolkit.htm
```

