Law of Cosines.
If the angles of a triangle are \(A, B\text{,}\) and \(C\text{,}\) and the opposite sides are respectively \(a, b,\) and \(c\text{,}\) then
\begin{gather*}
\blert{a^{2} = b^{2} + c^{2} - 2bc \cos (A)}\\
\blert{b^{2} = a^{2} + c^{2} - 2ac \cos (B)}\\
\blert{c^{2} = a^{2} + b^{2} - 2ab \cos (C)}
\end{gather*}

