Appendix A Answers to Selected Exercises and Homework Problems
1 Triangles and Circles
1.1 Angles and Triangles
Homework 1.1
3.
Answer.
5.
Answer.
7.
Answer.
\(\theta = 108.8\degree\)
9.
Answer.
\(\alpha = 29\degree\)
11.
Answer.
\(\beta = 77\degree\)
13.
Answer.
\(\alpha = 12\degree\)
15.
Answer.
\(\theta = 65\degree\)
17.
Answer.
\(\theta = 12\degree\)
19.
Answer.
\(\psi = 73\degree\)
21.
Answer.
\(\phi = 88\degree\)
23.
Answer.
- \(\displaystyle \phi = 120\degree\)
- \(\displaystyle \phi = 160\degree\)
- \(\displaystyle \phi = \alpha + \beta\)
- An exterior angle is equal to the sum of the opposite interior angles.
25.
Answer.
\(\theta = 72\degree, \phi = 54\degree\)
27.
Answer.
\(\theta = 100\degree, \phi = 30\degree\)
29.
Answer.
- \(\displaystyle 180\degree\)
- \(\displaystyle 90\degree\)
- a right triangle
31.
Answer.
- They are base angles of an isosceles triangle.
- They are base angles of an isosceles triangle.
- \(\angle OAB\) corresponds to \(\theta\) of Problem 29, and \(\angle OBC\) corresponds to \(\phi\) of Problem 29.
33.
Answer.
\(\alpha = 30\degree, \beta = 60\degree\)
35.
Answer.
\(x = 47\degree, y = 133\degree\)
37.
Answer.
\(x = 60\degree, y = 15\degree\)
39.
Answer.
\(x = 100\degree, y = 16\degree\)
41.
Answer.
\(x = 90\degree, y = 55\degree\)
43.
Answer.
\(x = 50\degree, y = 80\degree\)
45.
Answer.
- \(\displaystyle \angle 1 = \angle 4, \angle 3 = \angle 5\)
- \(\displaystyle 180\degree\)
- In the equation \(\angle 4 + \angle 2 + \angle 5 = 180\degree,\) substitute \(\angle 1\) for \(\angle 4\text{,}\) and substitute \(\angle 3\) for \(\angle 5\) to conclude that the sum of the angles in the triangle is \(180 \degree\text{.}\)
47.
Answer.
\(\angle 1 = 130\degree\) because vertical angles are equal. \(\angle 2 = 50\degree\) because it makes a straight angle with a \(130\degree\) angle. \(\angle 3 = 65\degree\) because it is a base angle of an isosceles triangle whose vertex angle is \(50\degree\text{.}\) \(\angle 4 = 65\degree\) for the same reason. \(\angle 5 = 25\degree\) because it is complementary to \(\angle 4\text{.}\)
1.2 Similar Triangles
Homework 1.2
1.
Answer.
\(\triangle PQT \cong \triangle SRT\text{,}\) \(x=7\text{,}\) \(y=3, \alpha=18\degree\)
3.
Answer.
\(\triangle PRE \cong \triangle URN, z=12\text{,}\) \(\theta = 10\degree\text{,}\) \(\phi = 70\degree\)
5.
Answer.
\(\triangle ABT \cong \triangle ABC,\) so \(AT=AC\)
7.
Answer.
Similar. Corresponding sides are proportional.
9.
Answer.
Similar. Corresponding angles are equal.
11.
Answer.
\(\angle A = 37\degree, \angle B = 37\degree\)
13.
Answer.
\(h = 12\)
15.
Answer.
\(p=35\)
17.
Answer.
\(g=84\)
19.
Answer.
\(h=30\)
21.
Answer.
154 feet
23.
Answer.
1 mile
25.
Answer.
17.1 square feet
27.
Answer.
\(y=\frac{12}{17}x\)
29.
Answer.
\(h=7.5\)
31.
Answer.
\(c=15\)
33.
Answer.
\(s=6\)
35.
Answer.
\(y=\frac{3}{5}x\)
37.
Answer.
\(y=5+\frac{3}{4}x\)
39.
Answer.
- \(\angle B = 70\degree\text{,}\) \(\angle CAD = 70\degree\text{,}\) \(\angle DAB = 20\degree\)
- \(\triangle DBA\) and \(\triangle DAC.\) The hypotenuse is \(BC\) in \(\triangle ABC\text{,}\) \(BA\) in \(\triangle DBA\text{,}\) and \(AC\) in \(\triangle DAC\text{.}\) The short leg is \(AB\) in \(\triangle ABC\text{,}\) \(DB\) in \(\triangle DBA\text{,}\) and \(DA\) in \(\triangle DAC\text{.}\) The longer leg is \(AC\) in \(\triangle ABC\text{,}\) \(DA\) in \(\triangle DBA\text{,}\) and \(DC\) in \(\triangle DAC\text{.}\)
1.3 Circles
Homework 1.3
1.
Answer.
13 miles
3.
Answer.
10, 10.00
5.
Answer.
\(4\sqrt{5} \approx 8.94\)
7.
Answer.
5
9.
Answer.
\(2\sqrt {5}\)
11.
Answer.
5
13.
Answer.
\(~~24.7\)
15.
Answer.
- \(\displaystyle \sqrt{(x+3)^2+(y-4)^2}\)
- \(\displaystyle \sqrt{(x+3)^2+(y-4)^2}=5\)
17.
Answer.
The distance between the points \((x,y)\) and \((4,-1)\) is 3 units.
19.
Answer.
- \(6\sqrt{2}~\)cm
- 8.49 cm
21.
Answer.
- \(25\pi~\)sq in
- 78.54 sq in
23.
Answer.
- approximation
- approximation
- approximation
- exact
25.
Answer.
\(x\) \(-5\) \(-4\) \(-3\) \(-2\) \(-1\) \(0\) \(1\) \(2\) \(3\) \(4\) \(5\) \(y\) \(0\) \(\pm 3\) \(\pm 4\) \(\pm \sqrt{21}\) \(\pm 2\sqrt{6} \) \(\pm 5\) \(\pm 2\sqrt{6}\) \(\pm \sqrt{21}\) \(\pm 4\) \(\pm 3 \) \(0\)
27.
Answer.
- \(\displaystyle x^2 + y^2 = 36\)
29.
Answer.
- \(\displaystyle x^2 + y^2 \lt 9\)
31.
Answer.
- No real value of \(y\) can satisfy \(x^2 +y^2 = 16\) unless \(-4 \le x \le 4\)
- The graph has no points where \(x \gt 4\) and no points where \(x \lt -4 \)
33.
Answer.
\(\sqrt{10}\)
35.
Answer.
- \(\displaystyle 12\pi\)
37.
Answer.
- \(\displaystyle 4\pi\)
39.
Answer.
\((-2\sqrt{5},-4), (2\sqrt{5},-4)\)
41.
Answer.
\(P(\dfrac{1}{2}, \dfrac{\sqrt{3}}{2}), Q(\dfrac{1}{2}, \dfrac{-\sqrt{3}}{2}), R(\dfrac{-3}{4}, \dfrac{\sqrt{7}}{4}), S(\dfrac{-3}{4}, \dfrac{-\sqrt{7}}{4})\)
43.
Answer.
- \(\displaystyle 45\degree\)
- \(5\pi \) ft
- \(50\pi \) sq ft
45.
Answer.
- \(\displaystyle \dfrac{2}{5}\)
- \(40\pi \) sq ft
- \(8\pi \) ft
47.
Answer.
- \(\displaystyle \dfrac{1}{10}\)
- \(\dfrac{\pi}{10} \) sq km
- \(\dfrac{\pi}{5} \) km
49.
Answer.
- \(\displaystyle \dfrac{5}{6}\)
- \(\dfrac{15\pi}{2}\) sq m
- \(5\pi \) m
51.
Answer.
2070 miles
53.
Answer.
- 54,000 miles
- 2240 mph
55.
Answer.
- \(\displaystyle (x-3)^2 + (y+2)^2 = 36\)
- \(\displaystyle (x-h)^2 + (y-k)^2 = r^2\)
1.4 Chapter 1 Summary and Review
Chapter 1 Review Problems
1.
Answer.
3.
Answer.
5.
Answer.
\(\alpha = \beta = \gamma = 60\degree\)
7.
Answer.
\(\phi = \omega = 79\degree\)
9.
Answer.
\(\theta = 65\degree\text{,}\) \(\phi = 25\degree\)
11.
Answer.
\(\delta = 30\degree\text{,}\) \(\gamma = 60\degree\)
13.
Answer.
\(\sigma = 39\degree\text{,}\) \(\omega = 79\degree\)
15.
Answer.
\(\alpha = 51\frac{3}{7}\degree\text{,}\) \(\beta = 64\frac{2}{7}\degree\)
17.
Answer.
\(\triangle ABC \cong \triangle EDC\text{,}\) \(\alpha = 40\degree\text{,}\) \(\beta = 130\degree\text{,}\) \(x=32\)
19.
Answer.
Yes, three pairs of equal angles
21.
Answer.
Yes, three pairs of equal angles
23.
Answer.
13
25.
Answer.
18
27.
Answer.
\(y=\dfrac{5x}{2}\)
29.
Answer.
\(y=\dfrac{7x}{3}\)
31.
Answer.
\(y=\dfrac{x}{3}\)
33.
Answer.
\(y=\dfrac{12x}{5}\)
35.
Answer.
\(\alpha=70\degree\)
37.
Answer.
14 ft
39.
Answer.
\(3\frac{3}{4}\) in
41.
Answer.
All side have length \(\sqrt{61},\) opposite sides have slopes \(\dfrac{5}{6}\) and \(\dfrac{-6}{5}\)
43.
Answer.
\(AC=BC=18\)
45.
Answer.
- \(\displaystyle \sqrt{(x-2)^2+(y-5)^2}=3\)
- \(\displaystyle (x-2)^2+(y-5)^2=9\)
47.
Answer.
\(4\sqrt{5} \approx 8.944\) cm
49.
Answer.
\((\dfrac{-1}{3}, \dfrac{2\sqrt{2}}{3}), (\dfrac{-1}{3}, \dfrac{-2\sqrt{2}}{3})\)
51.
Answer.
- \(4\pi\) ft
- \(\displaystyle 20\pi~ \text{ft}^2\)
53.
Answer.
- \(\displaystyle 45\degree, 60\degree\)
- \(\dfrac{49\pi}{8}~ \text{in}^2, 6\pi~ \text{in}^2\) Delbert
- \(\dfrac{79\pi}{4}\) in, \(2\pi\) in, Francine
2 The Trigonometric Ratios
2.1 Side and Angle Relationships
Homework 2.1
1.
Answer.
The sum of the angles is not \(180\degree\text{.}\)
3.
Answer.
The exterior angle is not equal to the sum of the opposite interior angles.
5.
Answer.
The sum of the acute angles is not \(90\degree\text{.}\)
7.
Answer.
The largest side is not opposite the largest angle.
9.
Answer.
The Pythagorean theorem is not satisfied.
11.
Answer.
\(5^2 + 12^2 = 13^2\text{,}\) but the angle opposite the side of length 13 is \(85\degree\text{.}\)
13.
Answer.
\(4 \lt x \lt 16\)
15.
Answer.
\(0 \lt x \lt 16\)
17.
Answer.
21 in
19.
Answer.
\(6\sqrt{2}~\)in
21.
Answer.
The rectangle is \(6\sqrt{10}\) inches by \(18\sqrt{10}\) inches.
23.
Answer.
29
25.
Answer.
\(\sqrt{3}\)
27.
Answer.
No
29.
Answer.
Yes
31.
Answer.
No
33.
Answer.
The distance from \((0,0)\) to \((3,3)\) is \(3\sqrt{2}\text{,}\) and the distance from \((3,3)\) to \((6,0)\) is also \(3\sqrt{2}\text{,}\) so the triangle is isosceles. The distance from \((0,0)\) to \((6,0)\) is 6, and \((3\sqrt{2})^2 + (3\sqrt{2})^2 = 6^2\) so the triangle is a right triangle.
35.
Answer.
25 ft
37.
Answer.
\(\alpha=30\degree, \beta=60\degree, h=\sqrt{3}\)
39.
Answer.
\(8\sqrt{3}\) in
41.
Answer.
- No
- Yes
43.
Answer.
- \((-1,0)\) and \((1,0)\text{;}\) 2
- \(\sqrt{(p+1)^2+q^2}\) and \(\sqrt{(p-1)^2+q^2}\)
- \begin{align*} (\sqrt{(p+1)^2+q^2})^2 \amp + (\sqrt{(p-1)^2+q^2})^2\\ \amp = p^2+2p+1+q^2+p^2-2p+1+q^2\\ \amp =2p^2+2+2q^2=2+2(p^2+q^2)\\ \amp =2+2(1)=4 \end{align*}
2.2 Right Triangle Trigonometry
Homework 2.2
1.
Answer.
- 0.91
- 0.91
- 0.9063
3.
Answer.
- 0.77
- 0.77
- 0.7660
5.
Answer.
- \(\displaystyle 4\sqrt{13} \approx 14.42\)
- \(\sin\theta = 0.5547\text{,}\) \(\cos\theta = 0.8321\text{,}\) \(\tan\theta = 0.6667\)
7.
Answer.
- \(\displaystyle 4\sqrt{15} \approx 15.49\)
- \(\sin(\theta) = 0.9682\text{,}\) \(\cos(\theta) = 0.2500\text{,}\) \(\tan(\theta) = 3.8730\)
9.
Answer.
- \(\displaystyle 2\sqrt{67} \approx 16.37\)
- \(\sin(\theta) = 0.2116\text{,}\) \(\cos(\theta) = 0.9774\text{,}\) \(\tan(\theta) = 0.2165\)
11.
Answer.
(Answers may vary)
13.
Answer.
(Answers may vary)
15.
Answer.
(Answers may vary)
17.
Answer.
14.41
19.
Answer.
37.86
21.
Answer.
86.08
23.
Answer.
25.
Answer.
27.
Answer.
- \(\tan(54.8\degree) = \dfrac{h}{20}\text{,}\) 170.1 yd
29.
Answer.
- \(\tan(36.2\degree) = \dfrac{260}{d}\text{,}\) 355.2 ft
31.
Answer.
- \(\sin(48\degree) = \dfrac{a}{1500}\text{,}\) 1114.7 m
33.
Answer.
- \(\cos(38\degree) = \dfrac{1800}{x}\text{,}\) 2284.2 m
35.
Answer.
\(x=\dfrac{82}{\tan(\theta)}\)
37.
Answer.
\(x=11~\sin(\theta)\)
39.
Answer.
\(x=\dfrac{9}{cos(\theta})\)
41.
Answer.
\(36 ~\sin(25\degree) \approx 15.21\)
43.
Answer.
\(46~ \sin(20\degree) \approx 15.73\)
45.
Answer.
\(12~ \sin(40\degree) \approx 7.71\)
47.
Answer.
\(~~~~\) | sin(\theta) | cos(\theta) | tan(\theta) |
\(\theta\) | \(\frac{3}{5}\) | \(\frac{4}{5}\) | \(\frac{3}{4}\) |
\(\phi\) | \(\frac{4}{5}\) | \(\frac{3}{5}\) | \(\frac{4}{3}\) |
49.
Answer.
\(~~~~\) | sin(\theta) | cos(\theta) | tan(\theta) |
\(\theta\) | \(\frac{1}{\sqrt{5}}\) | \(\frac{2}{\sqrt{5}}\) | \(\frac{1}{2}\) |
\(\phi\) | \(\frac{2}{\sqrt{5}}\) | \(\frac{1}{\sqrt{5}}\) | \(2\) |
51.
Answer.
- \(\theta\) and \(\phi\) are complements.
- \(\sin(\theta) = \cos(\phi)\) and \(\cos(\theta) = \sin(\phi)\text{.}\) The side opposite \(\theta \) is the side adjacent to \(\phi\text{,}\) and vice versa.
53.
Answer.
- As \(\theta\) increases, \(\tan(\theta)\) increases also. The side opposite \(\theta\) increases in length while the side adjacent to \(\theta\) remains fixed.
- As \(\theta\) increases, \(\cos (\theta)\) decreases. The side adjacent to \(\theta\) remains fixed while the hypotenuse increases in length.
55.
Answer.
As \(\theta\) decreases toward \(0\degree\text{,}\) the side opposite \(\theta\) approaches a length of 0, so sin \((\theta)\) approaches 0. But as \(\theta\) increases toward \(90\degree\text{,}\) the length of the side opposite \(\theta\) approaches the length of the hypotenuse, so \(\sin(\theta)\) approaches 1.
57.
Answer.
The triangle is not a right tringle.
59.
Answer.
\(\dfrac{21}{20}\) is the ratio of hypotenuse to the adjacent side, which is the reciprocal of \(\cos(\theta)\text{.}\)
61.
Answer.
- 0.2358
- sine
- \(\displaystyle 48\degree\)
- \(\displaystyle 77\degree\)
63.
Answer.
- \(\displaystyle \dfrac{5}{12}\)
- \(\displaystyle 3\)
- \(\displaystyle \dfrac{2}{3}\)
- \(\displaystyle \dfrac{2}{\sqrt{7}}\)
65.
Answer.
Although the triangles may differ in size, the ratio of the side adjacent to the angle to the hypotenuse of the triangle remains the same because the triangles would all be similar, and hence corresponding sides are proportional.
67.
Answer.
- \(\displaystyle \dfrac{2}{3}\)
- \(\displaystyle \dfrac{2}{3}\)
2.3 Solving Right Triangles
Homework 2.3
1.
Answer.
\(A=61\degree, ~a=25.26,~ c=28.88\)
3.
Answer.
\(A=68\degree, ~a=0.93,~ b=0.37\)
5.
Answer.
- \(B=48\degree\text{,}\) \(~a=17.4\text{,}\) \(~ b=19.3\)
7.
Answer.
- \(A=57\degree\text{,}\) \(~b=194.4\text{,}\) \(~ c=357.7\)
9.
Answer.
- \(B=78\degree\text{,}\) \(~b=18.8\text{,}\) \(~ c=19.2\)
11.
Answer.
- Solve \(\sin (53.7\degree) = \dfrac{8.2}{c}\) for \(c\text{.}\)
- Solve \(\tan (53.7\degree) = \dfrac{8.2}{a}\) for \(a\text{.}\)
- Subtract \(53.7\degree\) from \(90\degree\) to find \(A\text{.}\)
13.
Answer.
- Solve \(\cos (25\degree) = \dfrac{40}{c}\) for \(c\text{.}\)
- Solve \(\tan (25\degree) = \dfrac{a}{40}\) for \(a\text{.}\)
- Subtract \(25\degree\) from \(90\degree\) to find \(B\text{.}\)
15.
Answer.
- Solve \(\sin (64.5\degree) = \dfrac{a}{24}\) for \(a\text{.}\)
- Solve \(\cos (64.5\degree) = \dfrac{b}{24}\) for \(b\text{.}\)
- Subtract \(64.5\degree\) from \(90\degree\) to find \(B\text{.}\)
17.
Answer.
\(74.2\degree\)
19.
Answer.
\(56.4\degree\)
21.
Answer.
\(66.0\degree\)
23.
Answer.
\(11.5\degree\)
25.
Answer.
\(56.3\degree\)
27.
Answer.
\(73.5\degree\)
29.
Answer.
\(\cos (15\degree) = 0.9659~\) and \(~\cos^{-1} (0.9659) = 15\degree\)
31.
Answer.
\(\tan (65\degree) = 2.1445~\) and \(~\tan^{-1} (2.1445) = 65\degree\)
33.
Answer.
\(\sin^{-1}(0.6) \approx 36.87\degree\) is the angle whose sine is \(0.6\text{.}\) \((\sin 6\degree)^{-1} \approx 9.5668\) is the reciprocal of \(\sin (6\degree)\text{.}\)
35.
Answer.
- \(\displaystyle \sin (\theta) = \dfrac{1806}{3(2458)},~14.6\degree\)
37.
Answer.
- \(\displaystyle \tan \theta = \dfrac{32}{10},~72.6\degree\)
39.
Answer.
- \(c = 10\sqrt{10} \approx 31.6\text{,}\) \(~ A \approx 34.7\degree\text{,}\) \(~ B \approx 55.3\degree\)
41.
Answer.
- \(a = \sqrt{256.28} \approx 16.0\text{,}\) \(~ A \approx 56.5\degree\text{,}\) \(~ B \approx 33.5\degree\)
43.
Answer.
- \(\tan^{-1}(\dfrac{26}{30}) \approx 40.9\degree,~~91\sqrt{1676} \approx 3612.6\) cm
45.
Answer.
- \(6415\) km
47.
Answer.
- \(462.9\) ft
49.
Answer.
(a) and (b)
51.
Answer.
(a) and (d)
53.
Answer.
\(\dfrac{\sqrt{3}}{2} \approx 0.8660\)
55.
Answer.
\(\dfrac{1}{\sqrt{3}} =\dfrac{\sqrt{3}}{3} \approx 0.5774\)
57.
Answer.
\(1.0000\)
59.
Answer.
\(\theta\) | \(~~~0\degree~~~\) | \(~~~30\degree~~~\) | \(~~~45\degree~~~\) | \(~~~60\degree~~~\) | \(~~~90\degree~~~\) |
\(\sin (\theta)\) | \(0\) | \(\dfrac{1}{2} \) | \(\dfrac{\sqrt{2}}{2} \) | \(\dfrac{\sqrt{3}}{2} \) | \(1\) |
\(\cos (\theta)\) | \(1\) | \(\dfrac{\sqrt{3}}{2} \) | \(\dfrac{\sqrt{2}}{2} \) | \(\dfrac{1}{2} \) | \(0\) |
\(\tan (\theta)\) | \(0\) | \(\dfrac{1}{\sqrt{3}} \) | \(1\) | \(\sqrt{3}\) | undefined |
61.
Answer.
- smaller
- larger
- larger
63.
Answer.
\(a = 3\sqrt{3},~b = 3,~B = 30\degree\)
65.
Answer.
\(a = b = 4\sqrt{2},~B = 45\degree\)
67.
Answer.
\(e = 4,~f = 4\sqrt{3},~F = 120\degree\)
69.
Answer.
\(d = 2\sqrt{3},~e = 2\sqrt{2}, f = \sqrt{2} + \sqrt{6}, ~F = 75\degree\)
71.
Answer.
\(a = 20,~b = 20,~c = 20\sqrt{2}\)
73.
Answer.
- \(32\sqrt{3}\) cm
- \(128\sqrt{3}\) sq cm
75.
Answer.
- \(10\) sq cm
- \(10\sqrt{2}\) sq cm
- \(10\sqrt{3}\) sq cm
77.
Answer.
- \(64\) sq in
- \(4\sqrt{2}\) by \(4\sqrt{2}\text{,}\) area \(32\) sq in
- \(\displaystyle 2:1\)
2.4 Chapter 2 Summary and Review
Chapter 2 Review Problems
1.
Answer.
If \(C \gt 93\degree\text{,}\) then \(A+B+C \gt 180\degree\)
3.
Answer.
If \(A \lt B \lt 58\degree\text{,}\) then \(A+B+C \lt 180\degree\)
5.
Answer.
If \(C \gt 50\degree\text{,}\) then \(A+B+C \gt 180\degree\)
7.
Answer.
9.
Answer.
\(a = 97\)
11.
Answer.
\(c = 52\)
13.
Answer.
Yes
15.
Answer.
\(\theta = 35.26\degree\)
17.
Answer.
No. \(a = 6,~ c = 10\) or \(a = 9,~ c = 15\)
19.
Answer.
- \(\displaystyle w = 86.05\)
- \(\displaystyle \sin (\theta) = 0.7786,~ \cos(\theta) = 0.6275, ~ \tan (\theta) = 1.2407\)
21.
Answer.
- \(\displaystyle y = 16.52\)
- \(\displaystyle \sin (\theta) = 0.6957,~ \cos (\theta) = 0.7184, ~ \tan (\theta) = 0.9684\)
23.
Answer.
\(a = 7.89\)
25.
Answer.
\(x = 3.57\)
27.
Answer.
\(b = 156.95\)
29.
Answer.
\(A = 30\degree,~ a = \dfrac{23\sqrt{3}}{3},~ c = \dfrac{46\sqrt{3}}{3} \)
31.
Answer.
\(F = 105\degree,~ d = 10\sqrt{2},~ e = 20,~ f = 10 + 10\sqrt{3} \)
33.
Answer.
\(3\) cm
35.
Answer.
\(43.30\) cm
37.
Answer.
\(15.92\) m
39.
Answer.
\(114.02\) ft, \(37.87\degree\)
41.
Answer.
- \(\displaystyle 60.26\degree\)
- \(\displaystyle 60.26\degree\)
- \(\displaystyle m = \dfrac{7}{4} = \tan(\theta)\)
43.
Answer.
- \(\displaystyle c^2\)
- \(\displaystyle b - a,~ (b - a)^2\)
- \(\displaystyle \dfrac{1}{2}ab\)
- \(\displaystyle 4(\dfrac{1}{2}ab) + (a - b)^2 = 2ab + b^2 - 2ab + a^2 = a^2 + b^2\)
3 Laws of Sines and Cosines
3.1 Obtuse Angles
Homework 3.1
1.
Answer.
- \(\displaystyle 150\degree\)
- \(\displaystyle 135\degree\)
- \(\displaystyle 60\degree\)
- \(\displaystyle 155\degree\)
- \(\displaystyle 15\degree\)
- \(\displaystyle 70\degree\)
3.
Answer.
- \(\displaystyle (5,2)\)
- \(\displaystyle \sqrt{29}\)
- \(\displaystyle \cos (\theta) = \dfrac{5}{\sqrt{29}},~~\sin (\theta) = \dfrac{2}{\sqrt{29}},~~\tan (\theta) = \dfrac{2}{5}\)
5.
Answer.
- \(\displaystyle (-4,7)\)
- \(\displaystyle \sqrt{65}\)
- \(\displaystyle \cos (\theta) = \dfrac{-4}{\sqrt{65}},~~\sin (\theta) = \dfrac{7}{\sqrt{65}},~~\tan (\theta) = \dfrac{-7}{4}\)
7.
Answer.
- \(\sin (\theta) = \dfrac{9}{\sqrt{97}}\text{,}\) \(~\cos (\theta) = \dfrac{4}{\sqrt{97}}\)
- \(\sin (180\degree - \theta) = \dfrac{9}{\sqrt{97}}\text{,}\) \(~\cos (180\degree - \theta) = \dfrac{-4}{\sqrt{97}}\)
- \(\displaystyle \theta = 66\degree,~~180\degree - \theta = 114\degree\)
9.
Answer.
- \(\sin (\theta) = \dfrac{8}{\sqrt{89}}\text{,}\) \(~\cos (\theta) = \dfrac{-5}{\sqrt{89}}\)
- \(\sin (180\degree - \theta) = \dfrac{8}{\sqrt{89}}\text{,}\) \(~\cos (180\degree - \theta) = \dfrac{5}{\sqrt{89}}\)
- \(\displaystyle \theta = 122\degree,~~180\degree - \theta = 58\degree\)
11.
Answer.
- \(\cos (\theta) = \dfrac{-5}{13}\text{,}\) \(~\sin (\theta) = \dfrac{12}{13}\text{,}\) \(~\tan (\theta) = \dfrac{-12}{5}\)
- \(\displaystyle 112.6\degree\)
13.
Answer.
- \(\displaystyle \cos (\theta) = \dfrac{3}{5},~~\tan (\theta) = \dfrac{-3}{4}\)
- \(\displaystyle 143.1\degree\)
15.
Answer.
- \(\sin (\theta) = \dfrac{\sqrt{112}}{11}\text{,}\) \(~\tan (\theta) = \dfrac{\sqrt{112}}{3}\)
- \(\displaystyle 74.2\degree\)
17.
Answer.
- \(\sin (\theta) = \dfrac{1}{\sqrt{37}}\text{,}\) \(~\cos (\theta) = \dfrac{-6}{\sqrt{37}}\)
- \(\displaystyle 170.5\degree\)
19.
Answer.
- \(\sin (\theta) = \dfrac{4}{\sqrt{17}}\text{,}\) \(~\cos (\theta) = \dfrac{1}{\sqrt{17}}\)
- \(\displaystyle 76.0\degree\)
21.
Answer.
\(\theta\) | \(~~~0\degree~~~\) | \(~~~30\degree~~~\) | \(~~~45\degree~~~\) | \(~~~60\degree~~~\) | \(~~~90\degree~~~\) | \(~~~120\degree~~~\) | \(~~~135\degree~~~\) | \(~~~150\degree~~~\) | \(~~~180\degree~~~\) |
\(\cos (\theta)\) | \(1\) | \(\dfrac{\sqrt{3}}{2}\) | \(\dfrac{1}{\sqrt{2}}\) | \(\dfrac{1}{2}\) | \(0\) | \(\dfrac{-1}{2}\) | \(\dfrac{1}{\sqrt{2}}~\) | \(\dfrac{-\sqrt{3}}{2}\) | \(-1\) |
\(\sin (\theta)\) | \(0\) | \(\dfrac{1}{2}\) | \(\dfrac{1}{\sqrt{2}}\) | \(\dfrac{\sqrt{3}}{2}\) | \(1\) | \(\dfrac{\sqrt{3}}{2}\) | \(\dfrac{1}{\sqrt{2}}\) | \(\dfrac{1}{2}\) | \(0\) |
\(\tan (\theta)\) | \(0\) | \(\dfrac{1}{\sqrt{3}}\) | \(1\) | \(\sqrt{3}\) | \(\text{undefined}\) | \(-\sqrt{3}\) | \(-1\) | \(\dfrac{-1}{\sqrt{3}}\) | \(0\) |
23.
Answer.
- \(\displaystyle \sin (\theta) = \sin (180\degree - \theta)\)
- \(\displaystyle \cos (\theta) = -\cos (180\degree - \theta)\)
- \(\displaystyle \tan (\theta) = -\tan (180\degree - \theta)\)
25.
Answer.
- \(\displaystyle \theta \approx 41.4\degree,~~\phi \approx 138.6\degree\)
- \(\displaystyle \sin (\theta) = \sin (\phi) = \dfrac{\sqrt{7}}{4}\)
27.
Answer.
- \(\displaystyle \theta \approx 81.2\degree,~~\phi \approx 98.8\degree\)
- \(\displaystyle \sin (\theta) = \sin (\phi) = \dfrac{\sqrt{156279}}{400} \approx 0.9883\)
29.
Answer.
\(44.4\degree\) and \(135.6\degree\)
31.
Answer.
\(57.1\degree\) and \(122.9\degree\)
33.
Answer.
\(41.8\degree\) and \(138.2\degree\)
35.
Answer.
\(\sin (123\degree) = q\text{,}\) \(~\cos (33\degree) = q\text{,}\) \(~\cos (147\degree) = -q\)
37.
Answer.
\(\cos (106\degree) = -m\text{,}\) \(~\sin (16\degree) = m\text{,}\) \(~\sin (164\degree) = m\)
39.
Answer.
- \(\displaystyle (4,3),~ (8,6)\)
- \(\displaystyle y = \tan^{-1}\left(\dfrac{3}{4}\right) \approx 36.87\degree\)
-
\(\displaystyle (-4,3),~ (-8,6);~ 143.13\degree\)
41.
Answer.
- \(b=8\) in, \(h=3\sqrt{3}\) in
- \(12\sqrt{3}\) sq in
43.
Answer.
- \(b=6-\dfrac{3\sqrt{2}}{2}\) mi, \(h=\dfrac{3\sqrt{2}}{2}\) mi
- \(\dfrac {18\sqrt{2} - 9}{4}\) sq mi
45.
Answer.
- \(\displaystyle (-1, \sqrt{3})\)
- \(\displaystyle (-\sqrt{3}, 3)\)
47.
Answer.
- \(\displaystyle (-3,3)\)
- \(\displaystyle (-\sqrt{5}, \sqrt{5})\)
49.
Answer.
\(20.71\) sq m
51.
Answer.
\(55.51\) sq cm
55.
Answer.
\(38.04\) sq units
57.
Answer.
\(13,851.3\) sq ft
59.
Answer.
- \(\displaystyle (-74.97, 59.00)\)
- \(\displaystyle BC = 141.97,~~PC = 59.00\)
- \(\displaystyle 153.74\)
61.
Answer.
\(\dfrac{\sqrt{5} - 1}{4}\)
63.
Answer.
Bob found an acute angle. The obtuse angle is the supplement of \(17.46\degree\text{,}\) or \(162.54\degree\text{.}\)
65.
Answer.
- \(\cos (\theta) = \dfrac{x}{3}\text{,}\) \(~\sin (\theta) = \dfrac{\sqrt{9 - x^2}}{3}\text{,}\) \(~\tan (\theta) = \dfrac{\sqrt{9 - x^2}}{x}\)
67.
Answer.
- \(\cos (\theta) = \dfrac{-\sqrt{4 - y^2}}{2}\text{,}\) \(~\sin (\theta) = \dfrac{y}{2}\text{,}\) \(~\tan (\theta) = \dfrac{-y}{\sqrt{4 - y^2}}\)
69.
Answer.
- \(\cos (\theta) = \dfrac{-1}{\sqrt{1+ m^2}}\text{,}\) \(~\sin (\theta) = \dfrac{-m}{\sqrt{1+ m^2}}\text{,}\) \(~\tan (\theta) = m\)
3.2 The Law of Sines
Homework 3.2
1.
Answer.
\(x = 7.85\)
3.
Answer.
\(q = 33.81\)
5.
Answer.
\(d = 28.37\)
7.
Answer.
\(\theta = 30.80\degree\)
9.
Answer.
\(\theta = 126.59\degree\)
11.
Answer.
\(\beta = 37.14\degree\)
13.
Answer.
\(a = 4.09\text{,}\) \(~c = 9.48\text{,}\) \(~C = 115\degree\)
15.
Answer.
\(b = 2.98\text{,}\) \(~A = 36.54\degree\text{,}\) \(~B = 99.46\degree\)
17.
Answer.
\(a = 43.55\text{,}\) \(~b = 54.62\text{,}\) \(~C = 99\degree\)
19.
Answer.
a.
b. 808.1 ft
21.
Answer.
a.
b. 68.2 km
23.
Answer.
a.
b.1.23 mi \(+\) 0.99 mi; 0.22 mi
25.
Answer.
a.
b. 322.6 m
27.
Answer.
- \(\displaystyle 1\degree\)
- \(\displaystyle 66\degree\)
- 2617.2 ft
- 1022.6 ft
29.
Answer.
540,000 AU \(\approx 8.1\times 10^{13}\) km
31.
Answer.
750,000 AU \(\approx 1.1\times 10^{14}\) km
33.
Answer.
- \(\displaystyle \dfrac{3}{2}\)
- No, \(a\) is too short.
- 2
- 1
35.
Answer.
-
1,
-
0,
-
2,
-
1,
37.
Answer.
- \(\displaystyle C = 25.37\degree,~B = 114.63\degree,~ b = 16.97\)
- \(C =58.99\degree,~B = 81.01\degree,~ b = 9.22\) or \(C = 121.01\degree,~B = 18.99\degree,~ b = 3.04\)
- no solution
- 5.14
39.
Answer.
\(A = 40.44\degree,~B = 114.56\degree\) or \(A = 139.56\degree,~B = 15.44\degree\)
41.
Answer.
\(C = 37.14\degree,~A = 93.86\degree\)
43.
Answer.
1299 yd or 277.2 yd
45.
Answer.
- 11.79
- 24.16
- 24.16
47.
Answer.
- \(\displaystyle \dfrac{1}{2} ab \sin (C)\)
- \(\displaystyle \dfrac{1}{2} ac \sin (B)\)
- \(\displaystyle \dfrac{1}{2} bc \sin (A)\)
49.
Answer.
- \(\displaystyle b = \dfrac{h}{\sin (A)}\)
- \(\displaystyle h = a \sin (B)\)
- \(\displaystyle b = \dfrac{a \sin (B)}{\sin (A)} \)
- ii
3.3 The Law of Cosines
Homework 3.3
1.
Answer.
- \(\displaystyle 74 - 70\cos (\theta)\)
- 12.78
- 135.22
3.
Answer.
- \(\displaystyle \dfrac{a^2 + c^2 - b^2}{2ac}\)
- \(\displaystyle -0.4\)
5.
Answer.
- \(\displaystyle b^2 - 8 \cos (\alpha)b - 65 = 0\)
- \(\displaystyle 11.17,~ -5.82\)
7.
Answer.
7.70
9.
Answer.
13.44
11.
Answer.
5.12
13.
Answer.
\(133.43\degree\)
15.
Answer.
\(40.64\degree\)
17.
Answer.
\(A = 91.02\degree,~B = 37.49\degree,~C = 51.49\degree\)
19.
Answer.
\(A = 34.34\degree,~B = 103.49\degree,~C = 42.17\degree\)
21.
Answer.
6.30 or 2.70
23.
Answer.
29.76 or 5.91
25.
Answer.
16.00
27.
Answer.
Law of Cosines: \(61^2 = 29^2 + 46^2 - 2\cdot 29 \cdot 46 \cos (\phi)\)
29.
Answer.
Law of Sines: \(\dfrac{a}{\sin (46\degree)} = \dfrac{16}{\sin (25\degree)}\)
31.
Answer.
First the Law of Cosines: \(x^2 = 47^2 + 29^2 - 2 \cdot 47 \cdot 29 \cos (81\degree)\text{,}\) then either the Law of Sines: \(\dfrac{\sin (\theta)}{47} = \dfrac{\sin (81\degree)}{x}\) or the Law of Cosines: \(47^2 = x^2 + 29^2 - 2 \cdot x \cdot 29\cos (\theta)\)
33.
Answer.
Law of Cosines: \(9^2 = 4^2 + z^2 - 2\cdot 4 \cdot z \cos (28\degree)\text{,}\) or use the Law of Sines first to find the (acute) angle opposite the side of length 4, then find the angle opposite the side of length \(z\) by subtracting the sum of the known angles from \(180\degree\text{,}\) then using the Law of Sines again.
35.
Answer.
- \(b = 16.87\text{,}\) \(~ A = 85.53\degree\text{,}\) \(~C = 47.47\degree\)
37.
Answer.
- \(A = 58.41\degree\text{,}\) \(B = 48.19\degree\text{,}\) \(C = 73.40\degree\)
39.
Answer.
- \(a = 116.52\text{,}\) \(~ A = 85.07\degree\text{,}\) \(~C = 56.93\degree\) or \(a = 37.93\text{,}\) \(~ A = 18.93\degree\text{,}\) \(~C = 123.07\degree\)
41.
Answer.
- \(a = 7.76\text{,}\) \(~ b = 8.97\text{,}\) \(~C = 39\degree\)
43.
Answer.
- 1383.3 m
45.
Answer.
- 2123 mi, \(168.43\degree\) east of north
47.
Answer.
- \(7.74\degree\) west of south, 917.9 mi
49.
Answer.
- 92.99 ft
51.
Answer.
\(147.73~ \text{cm}^2\)
53.
Answer.
10.53
55.
Answer.
4.08
57.
Answer.
- First figure: \(b - x\) is the base of the small right triangle. Second: \(-x\) is the horizontal distance between \(P\) and the \(x\)-axis, so \(b + (-x)\) or \(b - x\) is the base of the large right triangle. Third: \(x = 0\text{,}\) and \(b\) is the base of a right triangle.
- First: \(x\) and \(y\) are the legs of a right triangle, \(a\) is the hypotenuse. Second: \(-x\) and \(y\) are the legs of a right triangle with hypotenuse \(a\text{.}\) Third: \(x = 0\) and \(y = a\)
- \(\displaystyle x = a \cos (C)\)
59.
Answer.
\begin{align*}
b^2 + c^2 \amp = (a^2 + c^2 - 2ac \cos (B)) + (a^2 + b^2 - 2bc \cos (C))\\
\amp = 2a^2 + b^2 + c^2 - 2a(c \cos (B) + b \cos (C))
\end{align*}
so \(2a^2 = 2a(c \cos (B) + b \cos (C))\text{,}\) and dividing both sides by \(2a\) yields \(a = (c \cos (B) + b \cos (C)\)
61.
Answer.
For the first equation, start with the Law of Cosines in the form
\begin{equation*}
a^2 = b^2 + c^2 - 2bc \cos (A)
\end{equation*}
Add \(2ab + 2bc \cos (A) - a^2\) to both sides of the equation, factor the right side, then divide both sides by \(2bc\text{.}\)
For the second equation, start with the Law of Cosines in the form
\begin{equation*}
b^2 + c^2 - 2bc \cos (A) = a^2
\end{equation*}
Add \(2bc - b^2 - c^2\) to both sides of the equation, factor the right side, then divide both sides by \(2bc\text{.}\)
3.4 Chapter 3 Summary and Review
Chapter 3 Review Problems
1.
Answer.
\(\dfrac{1}{2},~\dfrac{\pm\sqrt{3}}{2}\)
3.
Answer.
- 49.33
-
\(\displaystyle 114\degree\)
5.
Answer.
- \(\cos (\theta) = \dfrac{-2}{\sqrt{13}}\text{,}\) \(~\sin (\theta) = \dfrac{3}{\sqrt{13}}\text{,}\) \(~\tan (\theta)= \dfrac{-3}{2} \)
- \(\displaystyle \theta = 123.7\degree\)
7.
Answer.
- \(\cos (\theta) = \dfrac{-4}{5}\text{,}\) \(~\sin (\theta) = \dfrac{3}{5}\text{,}\) \(~\tan (\theta) = \dfrac{-3}{4} \)
- \(\displaystyle \theta = 143.1\degree\)
9.
Answer.
- \(\cos (\theta) = \dfrac{-\sqrt{11}}{6}\text{,}\) \(~\sin (\theta) = \dfrac{5}{6}\text{,}\) \(~\tan (\theta) = \dfrac{-5}{\sqrt{11}} \)
- \(\displaystyle \theta = 123.6\degree\)
11.
Answer.
- \(\cos (\theta) = \dfrac{-7}{25}\text{,}\) \(~\sin (\theta) = \dfrac{24}{25}\text{,}\) \(~\tan (\theta) = \dfrac{-24}{7} \)
- \(\displaystyle \theta = 106.3\degree\)
13.
Answer.
\(9.9\degree\text{,}\) \(~ 170.1\degree\)
15.
Answer.
\(22.0\degree,~ 158.0\degree\)
17.
Answer.
- \(\displaystyle 7\sqrt{2}\)
- \(\displaystyle 28\sqrt{2}\)
19.
Answer.
5127.39 sq ft
21.
Answer.
\(20.41\degree\)
23.
Answer.
\(a = 27.86\)
25.
Answer.
\(b = 6.03\)
27.
Answer.
\(w = 62.10\)
29.
Answer.
\(s = 15.61~ \text{or}~ 57.45\)
31.
Answer.
- 8.82
33.
Answer.
- \(\displaystyle 32.57\degree\)
35.
Answer.
- 16.29
37.
Answer.
- \(\displaystyle 58.65\degree\)
39.
Answer.
- 17.40
or
- 80.93
41.
Answer.
- 16.08 mi, 80.4 mph
43.
Answer.
- 72.47
45.
Answer.
-
353.32
- 217.52 m
47.
Answer.
- 79.64 m
- \(\displaystyle 35.2\degree\)
- 46.12 m
49.
Answer.
\(6.1\degree\)
51.
Answer.
4.2
53.
Answer.
22.25 ft
55.
Answer.
79,332.6 AU
57.
Answer.
- \(OW\) bisects the central angle at \(O\text{,}\) and the inscribed angle \(\theta\) is half the central angle at \(O\text{.}\)
- \(\displaystyle \sin \theta = \dfrac{s}{2r}\)
- \(\displaystyle r = \dfrac{s}{2 \sin (\theta)}\)
- \(\displaystyle d = \dfrac{s}{\sin (\theta)}\)
4 Trigonometric Functions
4.1 Angles and Rotation
Homework 4.1
1.
Answer.
- \(\displaystyle 216\degree\)
- \(\displaystyle 108\degree\)
- \(\displaystyle 480\degree\)
- \(\displaystyle 960\degree\)
3.
Answer.
- \(\displaystyle \dfrac{1}{8}\)
- \(\displaystyle \dfrac{5}{6}\)
- \(\displaystyle \dfrac{3}{2}\)
- \(\displaystyle \dfrac{7}{6}\)
5.
Answer.
- \(\displaystyle \dfrac{2}{3}\)
- \(\displaystyle \dfrac{5}{3}\)
7.
Answer.
\(60\degree\)
9.
Answer.
\(60\degree\)
11.
Answer.
\(14\degree\)
13.
Answer.
\(400\degree\) and \(-320\degree\) (Answers vary.)
15.
Answer.
\(575\degree\) and \(-145\degree\) (Answers vary.)
17.
Answer.
\(665\degree\) and \(-55\degree\) (Answers vary.)
19.
Answer.
\(295\degree\)
21.
Answer.
\(70\degree\)
23.
Answer.
\(315\degree\)
25.
Answer.
- \(\displaystyle 36.9\degree,~143.1\degree\)
27.
Answer.
- \(\displaystyle 72.5\degree,~287.5\degree\)
29.
Answer.
\(80\degree\)
31.
Answer.
\(36\degree\)
33.
Answer.
\(63\degree\)
35.
Answer.
\(165\degree\text{,}\) \(95\degree\text{,}\) \(345\degree\)
37.
Answer.
\(140\degree\text{,}\) \(220\degree\text{,}\) \(320\degree\)
39.
Answer.
\(112\degree\text{,}\) \(248\degree\text{,}\) \(292\degree\)
41.
Answer.
\(-0.9205\)
43.
Answer.
\(-0.7193\)
45.
Answer.
\(4.705\)
47.
Answer.
\(-0.7193\)
49.
Answer.
- \(\displaystyle 120\degree\)
- \(\displaystyle 135\degree\)
- \(\displaystyle 150\degree\)
- \(\displaystyle 210\degree\)
- \(\displaystyle 225\degree\)
- \(\displaystyle 240\degree\)
- \(\displaystyle 300\degree\)
- \(\displaystyle 315\degree\)
- \(\displaystyle 330\degree\)
51.
Answer.
-
\(\sin (120\degree) = \dfrac{\sqrt{3}}{2},~\cos (120\degree) = \dfrac{-1}{2},~\tan (120\degree) = -\sqrt{3},\)\(\sin (240\degree) = \dfrac{-\sqrt{3}}{2},~\cos (240\degree) = \dfrac{-1}{2},~\tan (240\degree) = \sqrt{3},\)\(\sin (300\degree) = \dfrac{-\sqrt{3}}{2},~\cos (300\degree) = \dfrac{1}{2},~\tan (300\degree) = -\sqrt{3}\)
53.
Answer.
-
\(\sin (135\degree) = \dfrac{1}{\sqrt{2}},~\cos (135\degree) = \dfrac{-1}{\sqrt{2}},~(\tan 135\degree) = -1,\)\(\sin (225\degree) = \dfrac{-1}{\sqrt{2}},~\cos (225\degree) = \dfrac{-1}{\sqrt{2}},~\tan (225\degree) = 1,\)\(\sin (315\degree) = \dfrac{-1}{\sqrt{2}},~\cos (315\degree) = \dfrac{1}{\sqrt{2}},~\tan (315\degree) = -1\)
55.
Answer.
- III and IV
- II and III
- I and III
57.
Answer.
- \(\displaystyle 0\degree~ \text{and}~ 180\degree\)
- \(\displaystyle 90\degree~ \text{and}~ 270\degree\)
59.
Answer.
\(105\degree\)
61.
Answer.
\(264\degree\)
63.
Answer.
\(313\degree\)
65.
Answer.
Sides of similar triangles are proportional.
4.2 Graphs of Trigonometric Functions
Homework 4.2
1.
Answer.
3.
Answer.
5.
Answer.
- \(\displaystyle \left(-225\degree, \dfrac{1}{\sqrt{2}}\right)\)
- \(\displaystyle \left(-135\degree, \dfrac{-1}{\sqrt{2}}\right)\)
- \(\displaystyle (-90\degree, -1)\)
- \(\displaystyle \left(45\degree, \dfrac{1}{\sqrt{2}}\right)\)
- \(\displaystyle (180\degree, 0)\)
- \(\displaystyle \left(315\degree, \dfrac{-1}{\sqrt{2}}\right)\)
7.
Answer.
- \(\displaystyle \left(-240\degree, \dfrac{-1}{2}\right)\)
- \(\displaystyle \left(-210\degree, \dfrac{-\sqrt{3}}{2}\right)\)
- \(\displaystyle \left(-60\degree, \dfrac{-1}{2}\right)\)
- \(\displaystyle \left(30\degree, \dfrac{\sqrt{3}}{2}\right)\)
- \(\displaystyle \left(120\degree, \dfrac{-1}{2}\right)\)
- \(\displaystyle \left(270\degree, 0\right)\)
9.
Answer.
-
\(\theta\) \(0\degree\) \(90\degree\) \(180\degree\) \(270\degree\) \(360\degree\) \(f(\theta)\) \(0\) \(1\) \(0\) \(-1\) \(0\) -
\(\theta\) \(0\degree\) \(90\degree\) \(180\degree\) \(270\degree\) \(360\degree\) \(f(\theta)\) \(1\) \(0\) \(-1\) \(0\) \(1\)
11.
Answer.
\(\dfrac{7}{2}\)
13.
Answer.
\(-2\sqrt{2} - 1\)
15.
Answer.
\(2\)
17.
Answer.
\(\dfrac{21}{2}\)
19.
Answer.
21.
Answer.
23.
Answer.
\(\theta\) \(81\degree\) \(82\degree\) \(83\degree\) \(84\degree\) \(85\degree\) \(86\degree\) \(87\degree\) \(88\degree\) \(89\degree\) \(\tan (\theta)\) \(6.314\) \(7.115\) \(8.144\) \(9.514\) \(11.43\) \(14.301\) \(19.081\) \(28.636\) \(57.29\) - \(\displaystyle \tan (\theta)~ \text{approaches}~ \infty\)
\(\theta\) \(99\degree\) \(98\degree\) \(97\degree\) \(96\degree\) \(95\degree\) \(94\degree\) \(93\degree\) \(92\degree\) \(91\degree\) \(\tan (\theta)\) \(-6.314\) \(-7.115\) \(-8.144\) \(-9.514\) \(-11.43\) \(-14.301\) \(-19.081\) \(-28.636\) \(-57.29\) - \(\displaystyle \tan (\theta)~ \text{approaches}~ -\infty\)
- The calculator gives an error message because \(\tan (90\degree)\) is undefined.
25.
Answer.
\(y = 6 \sin (\theta)\)
27.
Answer.
\(y = \cos (\theta) - 5\)
29.
Answer.
\(y = \sin (4\theta)\)
31.
Answer.
33.
Answer.
35.
Answer.
37.
Answer.
\(A(0\degree, -3)\text{,}\) \(~B\left(135\degree, \dfrac{3}{\sqrt{2}}\right)\text{,}\) \(~C\left(300\degree, \dfrac{-3}{2}\right)\)
39.
Answer.
\(P(112.5\degree, 1)\text{,}\) \(~Q(180\degree, 0)\text{,}\) \(~R(337.5\degree,-1)\)
41.
Answer.
\(X\left(45\degree, -3 + \dfrac{1}{\sqrt{2}}\right)\text{,}\) \(~Y(90\degree, -3)\text{,}\) \(~Z(300\degree,-2)\)
43.
Answer.
amp\(= 4\text{,}\) period \(= 360\degree\text{,}\) midline: \(y = 3\)
45.
Answer.
amp\(= 5\text{,}\) period \(= 180\degree\text{,}\) midline: \(y = 0\)
47.
Answer.
amp\(= 3\text{,}\) period \(= 120\degree\text{,}\) midline: \(y = -4\)
49.
Answer.
- amp \(=1\text{,}\) period \(=90\degree\text{,}\) midline: \(y = 0\)
- \(\displaystyle y = \sin (4\theta)\)
51.
Answer.
- amp \(=1\text{,}\) period \(=360\degree\text{,}\) midline: \(y = 3\)
- \(\displaystyle y = 3 + \cos (\theta)\)
53.
Answer.
- amp \(=4\text{,}\) period \(=360\degree\text{,}\) midline: \(y = -2\)
- \(\displaystyle y = -2 + 4\sin (\theta)\)
55.
Answer.
- amp \(=2\text{,}\) period \(=120\degree\text{,}\) midline: \(y = 2\)
- \(\displaystyle y = 2 + 2\cos (3\theta)\)
57.
Answer.
\(y = -4 + 6 \sin (3\theta)\) (Answers vary)
59.
Answer.
\(y = 3 + 2 \cos (\theta)\) (Answers vary)
61.
Answer.
\(y = 12 \cos (2\theta)\) (Answers vary)
63.
Answer.
\(y = 2 + 5\cos (\theta)\)
65.
Answer.
\(y = -4\sin (\theta)\)
4.3 Using Trigonometric Functions
Homework 4.3
1.
Answer.
\(36.9\degree,~143.1\degree\)
3.
Answer.
\(72.5\degree,~287.5\degree\)
5.
Answer.
\(191.5\degree,~348.5\degree\)
7.
Answer.
\(154.2\degree,~205.8\degree\)
9.
Answer.
\(83\degree,~263\degree\)
11.
Answer.
\(23\degree,~337\degree\)
13.
Answer.
\(265\degree,~275\degree\)
15.
Answer.
\(156\degree,~204\degree\)
17.
Answer.
\(246\degree,~294\degree\)
19.
Answer.
\(149\degree,~329\degree\)
21.
Answer.
- \(\displaystyle (-0.94, -0.34)\)
- \(\displaystyle (-1.88, -0.68)\)
23.
Answer.
- \(\displaystyle (-0.94, 0.34)\)
- \(\displaystyle (-1.88, 0.68)\)
25.
Answer.
\((4\sqrt{2},-4\sqrt{2})\)
27.
Answer.
\((-10,-10\sqrt{3})\)
29.
Answer.
\((\dfrac{-15\sqrt{3}}{2},\dfrac{15}{2})\)
31.
Answer.
\((-1.25,-5.87)\)
33.
Answer.
\((5.70, -11.86)\)
35.
Answer.
\((9.46,-3.26)\)
37.
Answer.
- 15.3 mi east, 21 mi north
39.
Answer.
- 91.9 km west, 77.1 km south
41.
Answer.
- 30.9 km west, 8.3 km north
43.
Answer.
\(51.34\degree\)
45.
Answer.
\(159.44\degree\)
47.
Answer.
\(y + 5 = (\tan 28\degree)(x - 3)~\) or \(~y + 5 = 0.532(x - 3)\)
49.
Answer.
\(y - 12 = (\tan 112\degree)(x + 8)~\) or \(~y - 12 = -2.475(x + 8)\)
51.
Answer.
not periodic
53.
Answer.
Periodic with period 4
55.
Answer.
- 10 minutes
57.
Answer.
- 1 week
59.
Answer.
- period 1 sec, midline \(y = 12\text{,}\) amp 10 inches
61.
Answer.
- period 1 year, midline \(y = 3500\text{,}\) amp 2500
63.
Answer.
- period 1 year, midline \(y = 51\text{,}\) amp 21
65.
Answer.
a. IV b. III c. II d. I
67.
Answer.
69.
Answer.
- Emotional high: Oct 5 and Nov 3, low: Oct 19; Physical high: Sep 30 and Oct 23, low: Oct 12 and Nov 4; Intellectual high: Oct 10, low: Oct 26
- Emotional: 28 days, physical: 23 days, intellectual: 32 days
- 5152 days
71.
Answer.
- periodic, period 8
- 4, midline: \(y = 3\)
- \(\displaystyle k = 8\)
- \(\displaystyle a = 3,~b = 7\)
73.
Answer.
- systolic 120 mm Hg, diastolic 80 mm Hg, pulse pressure 40 mm Hg.
- \(\displaystyle 93\frac{1}{3}\)
- 72 beats per minute
75.
Answer.
- 69 hours.
- 2.2 to 3.5
- The larger dip corresponds to when the brighter star is eclipsed, the smaller dip corresponds to when the dimmer star is eclipsed.
4.4 Chapter 4 Summary and Review
Chapter 4 Review Problems
1.
Answer.
\(12\degree\)
3.
Answer.
- \(\displaystyle 150\degree,~ -210\degree\)
- \(\displaystyle 240\degree,~ -120\degree\)
- \(\displaystyle 160\degree,~ -560\degree\)
- \(\displaystyle 20\degree,~ -340\degree\)
5.
Answer.
- \(\displaystyle I,~60\degree;~ 120\degree,~ 240\degree,~ 300\degree\)
- \(\displaystyle IV,~25\degree;~ 155\degree,~ 205\degree,~ 335\degree\)
- \(\displaystyle II,~80\degree;~ 80\degree,~ 260\degree,~ 280\degree\)
- \(\displaystyle III,~70\degree;~ 70\degree,~ 110\degree,~ 290\degree\)
7.
Answer.
\(\theta\) \(30\degree\) \(60\degree\) \(90\degree\) \(120\degree\) \(150\degree\) \(180\degree\) \(210\degree\) \(240\degree\) \(270\degree\) \(300\degree\) \(330\degree\) \(360\degree\) \(f(\theta)\) \(30\) \(60\) \(90\) \(60\) \(30\) \(0\) \(30\) \(60\) \(90\) \(60\) \(30\) \(0\)
9.
Answer.
\(210\degree,~ 330\degree\)
11.
Answer.
\(120\degree,~ 240\degree\)
13.
Answer.
\(45\degree,~ 225\degree\)
15.
Answer.
\(23\degree,~ 337\degree\)
17.
Answer.
\(72\degree,~ 252\degree\)
19.
Answer.
\(163\degree,~ 277\degree\)
21.
Answer.
\(221.81\degree,~ 318.19\degree\)
23.
Answer.
\(123.69\degree,~ 303.69\degree\)
25.
Answer.
\(128.68\degree,~ 231.32\degree\)
27.
Answer.
\((-9.74, -2.25)\)
29.
Answer.
\((-0.28, 8.00)\)
31.
Answer.
\((2.84, 0.98)\)
33.
Answer.
south: 1.74 mi, west: 9.85 mi
35.
Answer.
\(y = 4 + 7 \sin (180\theta)\)
37.
Answer.
\(y = 17 + 7 \sin \theta\)
39.
Answer.
\(\dfrac{\sqrt{3}}{2}\)
41.
Answer.
0
43.
Answer.
\(y = 1.5 \cos (\dfrac{\theta}{3}),~ M(-90\degree, \dfrac{3\sqrt{3}}{4}), N(180\degree, \dfrac{3}{4})\)
45.
Answer.
\(y = 3 + 3 \sin 2\theta,~ A(-45\degree, 6), B(120\degree, 3 - \dfrac{3\sqrt{3}}{2})\)
47.
Answer.
- 24 hours
49.
Answer.
- 20 sec
51.
Answer.
- amp: 2, period: \(360\degree\text{,}\) midline: \(y = 4\)
53.
Answer.
- amp: 3.5, period: \(180\degree\text{,}\) midline: \(y = 1.5\)
55.
Answer.
\(30\degree\)
57.
Answer.
\(92.05\degree\)
59.
Answer.
\(y = x + 2\)
61.
Answer.
\(y = -\sqrt{3} x + 3\sqrt{3} - 4\)
63.
Answer.
The \(\theta\)-intercepts of \(\cos \theta\) occur at the vertical asymptotes of \(\tan \theta\text{.}\)
5 Equations and Identities
5.1 Algebra with Trigonometric Ratios
Homework 5.1
1.
Answer.
\(-2\)
3.
Answer.
\(\dfrac{1}{\sqrt{2}}\)
5.
Answer.
\(6\)
7.
Answer.
\(\dfrac{1}{2}\)
9.
Answer.
\(4\)
11.
Answer.
\(2\)
13.
Answer.
\(1\)
15.
Answer.
\(0\)
17.
Answer.
- \(\displaystyle 0.7660\)
- \(\displaystyle 0.8164\)
- \(\displaystyle 0.7660\)
19.
Answer.
- \(\displaystyle 0.6691\)
- \(\displaystyle 1.8271\)
- \(\displaystyle 0.6691\)
21.
Answer.
- \(\displaystyle 1\)
- \(\displaystyle 1\)
- \(\displaystyle 1\)
23.
Answer.
- \(\displaystyle -2x^2 - x\)
- \(\displaystyle -2\cos^2 (\theta) - \cos (\theta)\)
25.
Answer.
- \(\displaystyle 4SC\)
- \(\displaystyle 4\sin (\theta) \cos (\theta)\)
27.
Answer.
- \(\displaystyle 5C^2S^3\)
- \(\displaystyle 5\cos^2 (\theta) \sin^3 (\theta) \)
29.
Answer.
\(-2\cos (t) + 2 \cos (t) \sin (t); ~ 0.6360\)
31.
Answer.
\(\tan (\theta) - \tan (\phi); ~ -56.91\)
33.
Answer.
\(2\sin (x) \cos (x) - 2\sin (2x); ~ 0\)
35.
Answer.
No
37.
Answer.
No
39.
Answer.
Yes
41.
Answer.
No
43.
Answer.
No
45.
Answer.
- \(\displaystyle 2x^2 - x\)
- \(\displaystyle 2\sin^2 (A) - \sin (A)\)
47.
Answer.
- \(\displaystyle ab - 3a^2\)
- \(\displaystyle \tan (A) \tan (B) - 3 \tan^2 (A)\)
49.
Answer.
- \(\displaystyle 2C^2 + C - 1\)
- \(\displaystyle 2\cos^2 (\phi) + \cos (\phi) - 1\)
51.
Answer.
- \(\displaystyle a^2 - b^2\)
- \(\displaystyle \cos^2 (\theta) -\cos^2 (\phi)\)
53.
Answer.
- \(\displaystyle 1 - 2T + T^2\)
- \(\displaystyle 1 - 2\tan (\theta) + \tan^2 (\theta)\)
55.
Answer.
- \(\displaystyle T^4 - 4\)
- \(\displaystyle \tan^4 (\theta) - 4\)
57.
Answer.
- \(\displaystyle 3(3m + 5n)\)
- \(\displaystyle 3\Big(3\cos(\alpha) + 5\cos(\beta)\Big)\)
59.
Answer.
- \(\displaystyle 5r(r - 2q)\)
- \(\displaystyle 5\tan (C) \Big(\tan (C) - 2 \tan (B)\Big)\)
61.
Answer.
- \(\displaystyle (3C+1)(3C-1)\)
- \(\displaystyle \Big(3\cos (\beta) + 1\Big)\Big(3\cos (\beta) - 1\Big)\)
63.
Answer.
- \(\displaystyle 2T^2(3T - 4)\)
- \(\displaystyle 2\tan^2 (A)\Big(3\tan (A) - 4\Big)\)
65.
Answer.
- \(\displaystyle (t - 5)(t + 4)\)
- \(\displaystyle \Big(\tan (\theta) - 5\Big)\Big(\tan (\theta) + 4\Big)\)
67.
Answer.
- \(\displaystyle (3c - 1)(c + 1)\)
- \(\displaystyle \Big(3\cos (B) - 1\Big)\Big(\cos (B) + 1\Big)\)
69.
Answer.
- \(\displaystyle (6S + 1)(S - 1)\)
- \(\displaystyle \Big(6\sin (\alpha) + 1\Big)\Big(\sin (\alpha) - 1\Big)\)
5.2 Solving Equations
Homework 5.2
1.
Answer.
\(70\degree\)
3.
Answer.
\(40\degree\)
5.
Answer.
I: \(18\degree;\) II: \(162\degree;\) III: \(198\degree;\) IV: \(342\degree\)
7.
Answer.
I: \(52\degree;\) II: \(128\degree;\) III: \(232\degree;\) IV: \(308\degree\)
9.
Answer.
- \(\displaystyle 0,~4,~2,~0,~4\)
- \(\displaystyle -1~\text{or}~2\)
11.
Answer.
- \(\displaystyle 1,~\dfrac{\sqrt{3}+1}{2},~\sqrt{2},~\dfrac{\sqrt{3}+1}{2}\)
- \(\displaystyle 45\degree\)
13.
Answer.
- \(\displaystyle 0,~\dfrac{2-\sqrt{2}}{2},~\dfrac{1 -\sqrt{3}}{2},~-1\)
- \(\displaystyle 270\degree\)
15.
Answer.
\(x = 5,~-3\)
17.
Answer.
\(x = -3,~1,~2\)
19.
Answer.
\(\theta = 30\degree ~\) or \(~ \theta = 210\degree\)
21.
Answer.
\(\theta = 60\degree ~\) or \(~ \theta = 300\degree\)
23.
Answer.
\(\theta = 210\degree ~\) or \(~ \theta = 330\degree\)
25.
Answer.
\(\theta = 225\degree ~\) or \(~ \theta = 315\degree\)
27.
Answer.
\(\theta = 0\degree ~\) or \(~ \theta = 180\degree\)
29.
Answer.
\(\theta = 60\degree, ~\theta = 120\degree,~\theta = 240\degree,~\) or \(~ \theta = 300\degree\)
31.
Answer.
\(\theta = 45\degree,~\theta = 135\degree,~\theta = 225\degree, ~\) or \(~ \theta = 315\degree\)
33.
Answer.
\(\theta = 104.04\degree ~\) or \(~ \theta = 284.04\degree\)
35.
Answer.
\(\theta = 53.13\degree ~\) or \(~ \theta = 306.87\degree\)
37.
Answer.
\(\theta = 188.21\degree ~\) or \(~ \theta = 351.79\degree\)
39.
Answer.
\(A = 135\degree ~\) or \(~ A = 315\degree\)
41.
Answer.
\(\phi = 210\degree ~\) or \(~ \phi = 330\degree\)
43.
Answer.
\(B = 90\degree ~\text{or}~ B = 270\degree\)
45.
Answer.
\(\theta = 210\degree ~\) or \(~ \theta = 330\degree\)
47.
Answer.
\(t = 202\degree ~\) or \(~t = 338\degree\)
49.
Answer.
\(B = 22\degree ~\text{or}~ B = 202\degree\)
51.
Answer.
\(\phi = 146\degree ~\) or \(~ \phi = 214\degree\)
53.
Answer.
\(\theta = 54.74\degree, ~\theta = 125.26\degree,~\theta = 234.74\degree,~\) or \(~ \theta = 305.26\degree\)
55.
Answer.
\(\theta = 0\degree\text{,}\) \(~\theta = 180\degree\text{,}\) \(~\theta = 191.54\degree,~\) or \(~ \theta = 348.46\degree\)
57.
Answer.
\(\theta = 60\degree\text{,}\) \(~ \theta = 180\degree\text{,}\) or \(~ \theta = 300\degree\)
59.
Answer.
\(\theta = 26.57\degree\text{,}\) \(~\theta = 161.57\degree\text{,}\) \(~\theta = 206.57\degree\text{,}\) or \(~ \theta = 341.57\degree\)
61.
Answer.
\(\theta = 78.69\degree\text{,}\) \(~\theta = 108.43\degree\text{,}\) \(~\theta = 258.69\degree\text{,}\) or \(~ \theta = 288.43\degree\)
63.
Answer.
\(\theta = 0\degree\)
65.
Answer.
\(17.22\degree\)
67.
Answer.
\(35.66\degree\)
5.3 Trigonometric Identities
Homework 5.3
1.
Answer.
not an identity
3.
Answer.
not an identity
5.
Answer.
identity
7.
Answer.
not an identity
9.
Answer.
not an identity
11.
Answer.
not an identity
13.
Answer.
identity
15.
Answer.
identity
17.
Answer.
\((1 + \sin (w))(1 - \sin (w)) = 1 - \sin^2 (w) = \cos^2 (w)\)
19.
Answer.
\begin{equation*}
\begin{aligned}[t]
\Big(\cos (\theta) - \sin (\theta)\Big)^2 \amp = \cos^2 (\theta) - 2\cos (\theta) \sin (\theta) + \sin^2 (\theta)\\
\amp = \Big(\cos^2 (\theta )+ \sin^2 (\theta)\Big) - 2\sin(\theta) \cos (\theta) = 1 - 2\sin(\theta) \cos (\theta)\\
\end{aligned}
\end{equation*}
21.
Answer.
\(\tan (\theta) \cos (\theta) = \dfrac{\sin (\theta)}{\cos (\theta)}\cdot \cos (\theta) = \sin (\theta) \)
23.
Answer.
\begin{equation*}
\begin{aligned}[t]
\cos^4 (x) - \sin^4 (x) \amp = \Big(\cos^2 (x) - \sin^2 (x)\Big)\Big(\cos^2 (x) + \sin^2 (x)\Big)\\
\amp = \Big(\cos^2 (x) - \sin^2 (x)\Big)(1) = \cos^2 (x) - \sin^2 (x)\\
\end{aligned}
\end{equation*}
25.
Answer.
\(\dfrac{\sin (u)}{1 + \cos (u)} \cdot \dfrac{1 - \cos (u)}{1 - \cos (u)} = \dfrac{\sin (u)\Big(1 - \cos (u)\Big)}{1 - \cos^2 (u)} = \dfrac{\sin (u)\Big(1 - \cos (u)\Big)}{\sin^2 (u)} = \dfrac{1 - \cos (u)}{\sin (u)}\)
27.
Answer.
\(1\)
29.
Answer.
\(1\)
31.
Answer.
\(\sin^2 (A)\)
33.
Answer.
\(\tan^2 (z)\)
35.
Answer.
\(3\)
37.
Answer.
\(1\)
39.
Answer.
\(6\)
41.
Answer.
\(\cos (2\theta)\)
43.
Answer.
\(\cos (\theta)\)
45.
Answer.
\(\sin (2t)\)
47.
Answer.
\(1 + 2\sin (\theta) + \sin^2 (\theta)\)
49.
Answer.
\(3\cos^2 (\phi) - 2\)
51.
Answer.
\(\theta = 90\degree, ~\theta = 180\degree, ~\theta = 270\degree\)
53.
Answer.
\(\theta = 90\degree, ~\theta = 210\degree, ~\theta = 330\degree\)
55.
Answer.
\(\theta = 210\degree, ~\theta = 330\degree\)
57.
Answer.
\(\theta = 18.43\degree,~ \theta = 198.43\degree\)
59.
Answer.
\(\sin (A) = \dfrac{-5}{13},~ \tan (A) = \dfrac{-5}{12}\)
61.
Answer.
\(\cos (\phi) = \dfrac{-4\sqrt{3}}{7},~ \tan (\phi) = \dfrac{-1}{4\sqrt{3}}\)
63.
Answer.
\(\sin (\theta) =\dfrac{-1}{\sqrt{5}}\text{,}\) \(~ \cos (\theta) = \dfrac{2}{\sqrt{5}}\)
65.
Answer.
\(\sin (\theta) =\dfrac{-3}{5}\text{,}\) \(~ \cos (\theta) = \dfrac{-4}{5}\)
67.
Answer.
\(\sin (\theta) =\dfrac{\sqrt{3}}{2}\text{,}\) \(~ \cos (\theta) = \dfrac{-1}{2}\text{,}\) \(~ \tan (\theta) = \sqrt{3}\)
69.
Answer.
\(\sin (\beta) =\dfrac{2}{\sqrt{5}}\text{,}\) \(~ \cos (\beta) = \dfrac{-1}{\sqrt{5}}\text{,}\) \(~ \tan (\beta) = -2\)
71.
Answer.
\begin{equation*}
\begin{aligned}[t]
\amp \sin (C) =\dfrac{1}{\sqrt{5}},~ \cos (C) = \dfrac{2}{\sqrt{5}},~ \tan (C) = \dfrac{1}{2}\\
\text{or}~~\amp \sin (C) =\dfrac{1}{\sqrt{5}},~ \cos (C) = \dfrac{-2}{\sqrt{5}},~ \tan (C) = \dfrac{-1}{2}\\
\end{aligned}
\end{equation*}
73.
Answer.
\(\dfrac{\tan (\alpha)}{1 + \tan (\alpha)} = \dfrac{\dfrac{\sin (\alpha)}{\cos (\alpha)}}{1 + \dfrac{\sin (\alpha)}{\cos (\alpha)}} \cdot \dfrac{\cos (\alpha)}{\cos (\alpha)} = \dfrac{\sin (\alpha)}{\sin (\alpha) + \cos (\alpha)}\)
75.
Answer.
\(\dfrac{1 + \tan^2 (\beta)}{1 - \tan^2 (\beta)} = \dfrac{\dfrac{1}{\cos^2 (\beta)}}{1 - \dfrac{\sin^2 (\beta)}{\cos^2 (\beta)}} \cdot \dfrac{\cos^2 (\beta)}{\cos^2 (\beta)} = \dfrac{1}{\cos^2 (\beta) - \sin^2 (\beta)}\)
77.
Answer.
- By the distance formula, \(\sqrt{x^2 + y^2} = r\text{,}\) or \(x^2 + y^2 = r^2\text{.}\)
- \(\displaystyle \dfrac{x^2}{r^2} + \dfrac{y^2}{r^2} = 1\)
- \(\displaystyle \left(\dfrac{x}{r}\right)^2 + \left(\dfrac{y}{r}\right)^2 = 1\)
- \(\displaystyle \Big(\cos (\theta)\Big)^2 + \Big(\sin (\theta)\Big)^2 = 1\)
5.4 Chapter 5 Summary and Review
Chapter 5 Review Problems
1.
Answer.
\(\dfrac{-3}{4\sqrt{2}}\)
3.
Answer.
\(\dfrac{1}{\sqrt{6}}\)
5.
Answer.
- \(\displaystyle 0.8660\)
- \(0.9848;\) No
7.
Answer.
- \(\displaystyle 1.4821\)
- \(1.4821;\) Yes
9.
Answer.
\(5\sin (x) - 2\sin (x) \cos (y) - \cos (y)\)
11.
Answer.
\(2\tan (\theta) - 10\tan^2 (\theta)\)
13.
Answer.
Not equivalent
15.
Answer.
Equivalent
17.
Answer.
\(2\cos^2 \alpha + \cos \alpha - 6\)
19.
Answer.
\(\tan^2 (\phi) - 2\tan (\phi) \cos (\phi) + \cos^2 (\phi)\)
21.
Answer.
\(6\Big(2\sin (3x) - \sin (2x)\Big)\)
23.
Answer.
\(\Big(1 + 3\tan (\theta)\Big)\Big(1 - 3\tan (\theta)\Big)\)
25.
Answer.
\(\cos (\alpha) + \sin (\alpha)\)
27.
Answer.
\(\dfrac{3}{2}\)
29.
Answer.
\(\dfrac{3\tan (C) + 2}{\tan (C) - 2}\)
31.
Answer.
\(51.32\degree,~ 308.68\degree\)
33.
Answer.
\(90\degree\text{,}\) \(~ 270\degree\text{,}\) \(~ 120\degree\text{,}\) \(~ 240\degree\)
35.
Answer.
\(90\degree\text{,}\) \(~ 210\degree\text{,}\) \(~ 330\degree\)
37.
Answer.
\(30\degree\text{,}\) \(~ 150\degree\text{,}\) \(~ 210\degree\text{,}\) \(~ 330\degree\)
39.
Answer.
\(0\degree\text{,}\) \(~ 120\degree\text{,}\) \(~ 240\degree\)
41.
Answer.
\(57.99\degree,~ 237.99\degree\)
43.
Answer.
\(90\degree,~ 270\degree\)
45.
Answer.
\(33.17\degree\)
47.
Answer.
Identity
49.
Answer.
Not an identity
51.
Answer.
Not an identity
53.
Answer.
Identity
55.
Answer.
\(\dfrac{1 - \cos^2 (\alpha)}{\tan (\alpha)} = \sin^2 (\alpha) \cdot \dfrac{\cos (\alpha)}{\sin (\alpha)} = \sin (\alpha) \cos (\alpha)\)
57.
Answer.
\begin{equation*}
\begin{aligned}[t]
\dfrac{\dfrac{\sin (\theta)}{\cos (\theta)} - \sin (\theta) \cos (\theta)}{\sin (\theta) \cdot \dfrac{\sin (\theta)}{\cos (\theta)}} \amp = \dfrac{\sin (\theta) - \sin (\theta) \cos^2 (\theta)}{\sin^2 (\theta)}\\
\amp = \dfrac{\sin (\theta) \Big(1 - \cos^2 (\theta)\Big)}{\sin^2 (\theta)} = \dfrac{\sin (\theta) \sin^2 (\theta)}{\sin^2 (\theta)} = \sin (\theta)\\
\end{aligned}
\end{equation*}
59.
Answer.
\(\dfrac{1}{\sin (\theta) \cos (\theta)}\)
61.
Answer.
\(1\)
63.
Answer.
\(0\)
65.
Answer.
\(1\)
67.
Answer.
\(\dfrac{1}{\cos^2 (\beta)}\)
69.
Answer.
\(\sin (x)\)
71.
Answer.
\(\sin (\beta) = \dfrac{-6}{\sqrt{85}},~ \cos (\beta) = \dfrac{-7}{\sqrt{85}},~ \tan (\beta) = \dfrac{6}{7}\)
73.
Answer.
\(\sin (\alpha) = \dfrac{\sqrt{21}}{5},~ \cos (\alpha) = \dfrac{-2}{5},~ \tan (\alpha) = \dfrac{-\sqrt{21}}{2}\)
75.
Answer.
\(0\degree,~ 180\degree,~ 270\degree\)
77.
Answer.
\(135\degree,~ 315\degree\)
79.
Answer.
\(0\degree,~ 60\degree,~ 180\degree,~ 300\degree\)
81.
Answer.
\(0\degree,~ 180\degree\)
6 Radians
6.1 Arclength and Radians
Homework 6.1
1.
Answer.
Radians | \(0\) | \(\dfrac{\pi}{4}\) | \(\dfrac{\pi}{2}\) | \(\dfrac{3\pi}{4}\) | \(\pi\) | \(\dfrac{5\pi}{4}\) | \(\dfrac{3\pi}{2}\) | \(\dfrac{7\pi}{4}\) | \(2 \pi\) |
Degrees | \(0\degree\) | \(45\degree\) | \(90\degree\) | \(135\degree\) | \(180\degree\) | \(225\degree\) | \(270\degree\) | \(315\degree\) | \(360\degree\) |
3.
Answer.
- \(\displaystyle 120\degree = \dfrac{2\pi}{3} \text{radians}\)
- \(\displaystyle 240\degree = \dfrac{4\pi}{3} \text{radians}\)
- \(\displaystyle 480\degree = \dfrac{8\pi}{3} \text{radians}\)
- \(\displaystyle 600\degree = \dfrac{10\pi}{3} \text{radians}\)
5.
Answer.
- \(\displaystyle 45\degree = \dfrac{\pi}{4} \text{radians}\)
- \(\displaystyle 135\degree = \dfrac{3\pi}{4} \text{radians}\)
- \(\displaystyle 225\degree = \dfrac{5\pi}{4} \text{radians}\)
- \(\displaystyle 315\degree = \dfrac{7\pi}{4} \text{radians}\)
7.
Answer.
9.
Answer.
- \(\displaystyle 0.52\)
- \(\displaystyle 2.62\)
- \(\displaystyle 3.67\)
- \(\displaystyle 5.76\)
11.
Answer.
13.
Answer.
\(2.09\)
15.
Answer.
\(2.62\)
17.
Answer.
\(0.52\)
19.
Answer.
\(2.36\)
21.
Answer.
- II
- IV
- IV
- I
23.
Answer.
- III
- II
- I
- IV
25.
Answer.
Radians | \(\dfrac{\pi}{6}\) | \(\dfrac{\pi}{4}\) | \(\dfrac{\pi}{3}\) |
Degrees | \(30\degree\) | \(45\degree\) | \(60\degree\) |
27.
Answer.
Radians | \(\dfrac{7\pi}{6}\) | \(\dfrac{5\pi}{4}\) | \(\dfrac{4\pi}{3}\) |
Degrees | \(210\degree\) | \(225\degree\) | \(240\degree\) |
29.
Answer.
- \(\displaystyle 1.31\)
- \(\displaystyle 4.12\)
- \(\displaystyle 5.71\)
31.
Answer.
- \(\displaystyle 45.8\degree\)
- \(\displaystyle 200.5\degree\)
- \(\displaystyle 292.2\degree\)
33.
Answer.
\(5.86~\text{in}\)
35.
Answer.
\(4.13~\text{m}\)
37.
Answer.
\(160.42\degree\)
39.
Answer.
- \(\displaystyle \dfrac{5\pi}{6}\)
- \(\displaystyle 32.72~\text{ft}\)
41.
Answer.
\(\dfrac{8}{67}~\text{radians}~\approx6.84\degree\)
43.
Answer.
- \(\displaystyle 33,000\pi\approx 103,672.6~\text{in}\)
- \(\displaystyle 33,000\pi\approx 103.672.6~\text{in per min}\)
45.
Answer.
\(170\pi\approx 534.1~\text{m per min}\)
47.
Answer.
\((0.2,0.98)\text{,}\) \(~(0.2,-0.98)\)
49.
Answer.
\((0.94,-0.35)\text{,}\) \(~(-0.94,-0.35)\)
51.
Answer.
\(\left(\dfrac{-\sqrt{3}}{2}, \dfrac{1}{2}\right)\text{,}\) \(~\left(\dfrac{-\sqrt{3}}{2}, \dfrac{-1}{2}\right)\)
53.
Answer.
\(\theta\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(s\) \(4\) \(8\) \(12\) \(16\) \(20\) \(24\) -
\(\displaystyle m = 4\)
- Arclength doubles; arclength triples
55.
Answer.
- \(\displaystyle \dfrac{\pi}{10}~\text{radians per min}\)
- \(\displaystyle \dfrac{10\pi}{9}~\text{radians per sec}\)
57.
Answer.
- \(\displaystyle \dfrac{\theta}{2\pi}\)
- \(\displaystyle \dfrac{3}{8},~\dfrac{5}{6},~\dfrac{7}{12}\)
59.
Answer.
\(32.5~\text{cm}^2\)
6.2 The Circular Functions
Homework 6.2
1.
Answer.
\(\hphantom{0000}\) | a | b | c | d |
\(t\) | \(\dfrac{\pi}{4}\) | \(\dfrac{3\pi}{4}\) | \(\dfrac{5\pi}{4}\) | \(\dfrac{7\pi}{4}\) |
\(x\) | \(\dfrac{1}{\sqrt{2}}\) | \(\dfrac{-1}{\sqrt{2}}\) | \(\dfrac{-1}{\sqrt{2}}\) | \(\dfrac{1}{\sqrt{2}}\) |
\(y\) | \(\dfrac{1}{\sqrt{2}}\) | \(\dfrac{1}{\sqrt{2}}\) | \(\dfrac{-1}{\sqrt{2}}\) | \(\dfrac{-1}{\sqrt{2}}\) |
3.
Answer.
\(\hphantom{0000}\) | a | b | c | d |
\(t\) | \(\dfrac{\pi}{3}\) | \(\dfrac{2\pi}{3}\) | \(\dfrac{4\pi}{3}\) | \(\dfrac{5\pi}{3}\) |
\(x\) | \(\dfrac{1}{2}\) | \(\dfrac{-1}{2}\) | \(\dfrac{-1}{2}\) | \(\dfrac{1}{2}\) |
\(y\) | \(\dfrac{\sqrt{3}}{2}\) | \(\dfrac{\sqrt{3}}{2}\) | \(\dfrac{-\sqrt{3}}{2}\) | \(\dfrac{-\sqrt{3}}{2}\) |
5.
Answer.
- \(\displaystyle \sin (0.4) \approx 0.39,~ \cos (0.4) \approx 0.92,~ \tan (0.4) \approx 0.42\)
- \(\displaystyle \sin (1.2) \approx 0.93,~ \cos (1.2) \approx 0.36,~ \tan (1.2) \approx 2.6\)
- \(\displaystyle \sin (2) \approx 0.91,~ \cos (2) \approx -0.42,~ \tan (2) \approx -2.2\)
7.
Answer.
- \(\displaystyle \sin (2.8) \approx 0.33,~ \cos (2.8) \approx -0.94,~ \tan (2.8) \approx -0.36\)
- \(\displaystyle \sin (3.5) \approx -0.35,~ \cos (3.5) \approx -0.94,~ \tan (3.5) \approx 0.37\)
- \(\displaystyle \sin (5) \approx -0.96,~ \cos (5) \approx 0.28,~ \tan (5) \approx -3.3\)
9.
Answer.
\(t \approx 1.27\) or \(t \approx 5\)
11.
Answer.
\(t \approx 3.92\) or \(t \approx 5.5\)
13.
Answer.
\(t \approx 2.72\) or \(t \approx 5.87\)
15.
Answer.
II
17.
Answer.
II
19.
Answer.
III
21.
Answer.
Negative
23.
Answer.
Positive
25.
Answer.
Positive
27.
Answer.
\(\sin (3.5)\text{,}\) \(\sin (0.5)\text{,}\) \(\sin (2.5)\text{,}\) \(\sin (1.5)\)
29.
Answer.
\(\cos (3)\text{,}\)\(\cos (4)\text{,}\) \(\cos (2)\text{,}\) \(\cos (5)\)
31.
Answer.
January 1: 4:24, April 1: 6:45, July 1: 8:02, October 1: 5:55
33.
Answer.
\(1.34\)
35.
Answer.
\(0.84\)
37.
Answer.
\(0.02\)
39.
Answer.
\(\dfrac{1}{12}\pi\)
41.
Answer.
\(\dfrac{1}{3}\pi\)
43.
Answer.
\(\dfrac{1}{4}\pi\)
45.
Answer.
-
\(\dfrac{5\pi}{6}\text{,}\) \(~\dfrac{7\pi}{6}\text{,}\) \(~\dfrac{11\pi}{6}\)
-
\(\dfrac{3\pi}{4}\text{,}\) \(~\dfrac{5\pi}{4}\text{,}\) \(~\dfrac{7\pi}{4}\)
-
\(\dfrac{2\pi}{3}\text{,}\) \(~\dfrac{4\pi}{3}\text{,}\) \(~\dfrac{5\pi}{3}\)
47.
Answer.
\(~\theta~\) | \(~~~\sin (\theta)~~~\) | \(~~~\cos (\theta)~~~\) | \(~~~\tan (\theta)~~~\) |
\(\dfrac{7\pi}{6}\) | \(\dfrac{-1}{2}\) | \(\dfrac{-\sqrt{3}}{2}\) | \(\dfrac{1}{\sqrt{3}}\) |
\(\dfrac{5\pi}{4}\) | \(\dfrac{-1}{\sqrt{2}}\) | \(\dfrac{-1}{\sqrt{2}}\) | \(1\) |
\(\dfrac{4\pi}{3}\) | \(\dfrac{-\sqrt{3}}{2}\) | \(\dfrac{-1}{2}\) | \(\sqrt{3}\) |
49.
Answer.
\(\dfrac{1}{4}\)
51.
Answer.
\(-\dfrac{3+\sqrt{3}}{3}\)
53.
Answer.
\(\dfrac{3-6\sqrt{3}}{4}\)
55.
Answer.
\((\cos (2.5),\sin (2.5)) \approx (-0.8, 0.6)\)
57.
Answer.
\((\cos (8.5), \sin (8.5)) \approx (-0.6, 0.8)\)
59.
Answer.
\(\cos (5) \approx 0.28\) mi east, \(\sin (5) \approx -0.96\) mi north, or about 0.96 mi south
61.
Answer.
\(1.75\)
63.
Answer.
\(5.8\)
65.
Answer.
\(3.84\)
67.
Answer.
-
Intersections: \(\left(\dfrac{1}{\sqrt{2}},\dfrac{1}{\sqrt{2}}\right)\) and \(\left(\dfrac{-1}{\sqrt{2}},\dfrac{-1}{\sqrt{2}}\right)\)
- \((\cos\left(\dfrac{\pi}{4}\right),\sin\left(\dfrac{\pi}{4}\right))\) and \(\left(\cos\left(\dfrac{5\pi}{4}\right),\sin\left(\dfrac{5\pi}{4}\right)\right)\)
69.
Answer.
-
\(\displaystyle m = \dfrac{3}{8}\)
- \(\displaystyle \tan^{-1}(\frac{3}{8})\approx 0.3588\)
71.
Answer.
\(y - 2 = \sqrt{3}(x - 4)\)
73.
Answer.
\(y + 8 = (\tan (2.4))((x - 5)\) or \(y + 8 = -0.916(x - 5)\)
75.
Answer.
Any point \((x,y)\) on the terminal side of \(\theta\) satisfies \(\cos (\theta) = \dfrac{x}{r}\text{,}\) \(~ \sin (\theta) = \dfrac{y}{r}\text{.}\) For the point \(P\) where \(r = 1\text{,}\) \(~\cos (\theta) = x\text{,}\) \(~\sin (\theta) = y\text{.}\) The arc of length \(t\) is spanned by an angle \(\theta\) in standard position. Because arclength is \(r\theta\) and \(r = 1\text{,}\) \(~ t = \theta,\) so \(x = \cos (t)\text{,}\) \(~ y = \sin (t)\text{.}\)
77.
Answer.
The two right triangles shown are similar, so their sides are proportional. The hypotenuse of the large triangle is \(r\) times the hypotenuse of the small triangle, so the two legs of the large triangle must be \(r\) times the legs of the small triangle. Thus, because the coordinates of the vertex on the unit circle are \((\cos (\theta), \sin (\theta))\text{,}\) the coordinates of \(P\) must be \((r\cos (\theta), r\sin (\theta))\text{.}\)
79.
Answer.
71 m west, 587 m north
6.3 Graphs of the Circular Functions
Homework 6.3
1.
Answer.
\(\theta\) \(0\) \(\dfrac{\pi}{12}\) \(\dfrac{\pi}{6}\) \(\dfrac{\pi}{4}\) \(\dfrac{\pi}{3}\) \(\dfrac{5\pi}{12}\) \(\dfrac{\pi}{2}\) \(\dfrac{7\pi}{12}\) \(\dfrac{2\pi}{3}\) \(\dfrac{3\pi}{4}\) \(\dfrac{5\pi}{6}\) \(\dfrac{11\pi}{12}\) \(\pi\) \(\cos (\theta)\) \(1\) \(0.97\) \(0.87\) \(0.71\) \(0.50\) \(0.26\) \(0\) \(-0.26\) \(-0.50\) \(-0.71\) \(-0.87\) \(-0.97\) \(-1\)
3.
Answer.
5.
Answer.
- Domain: \((-\infty, \infty)\text{,}\) range: \([-1,1]\)
7.
Answer.
- Domain: \(x \ne \dfrac{n\pi}{2},~n\) an odd integer, range: \((-\infty, \infty)\)
9.
Answer.
- \(x \approx 0.7\) or \(x \approx 2.4\)
- \(x \approx 0.36\) or \(x \approx 2.78\)
11.
Answer.
- \(x \approx 2\) or \(x \approx 4.3\)
- \(x \approx 2.5\) or \(x \approx 3.79\)
13.
Answer.
\(x \approx 1.3\) or \(x \approx 4.5\)
15.
Answer.
\(x \approx 2.7\) or \(x \approx 5.8\)
17.
Answer.
\(x \approx 1.4\) or \(x \approx 4.5\)
19.
Answer.
\(x \approx 2.2\) or \(x \approx 5.3\)
21.
Answer.
I: 0.5, II: 2.7, III: 3.6, IV: 5.8
23.
Answer.
I: 0.6, II: 2.6, III: 3.7, IV: 5.7
25.
Answer.
I: 1.3, II: 1.8, III: 4.5, IV: 4.9
27.
Answer.
\(t \approx 0.74\) or \(t \approx 5.55\)
29.
Answer.
\(t \approx 1.01\) or \(t \approx 4.15\)
31.
Answer.
\(x \approx 3.94\) or \(x \approx 5.48\)
33.
Answer.
\(t = \dfrac{3\pi}{2}\)
35.
Answer.
\(x = \dfrac{\pi}{4}~\) or \(~x = \dfrac{5\pi}{4}\)
37.
Answer.
\(z = \dfrac{\pi}{3}~\) or \(~z = \dfrac{5\pi}{3}\)
39.
Answer.
\(s = \dfrac{2\pi}{3}~\) or \(~s = \dfrac{5\pi}{3}\)
41.
Answer.
\(t = \dfrac{5\pi}{4}~\) or \(~t = \dfrac{7\pi}{4}\)
43.
Answer.
\(x = \dfrac{5\pi}{6}~\) or \(~x = \dfrac{7\pi}{6}\)
45.
Answer.
- \(\displaystyle 0.78\)
- \(\displaystyle 1.12\)
47.
Answer.
- \(\displaystyle 0.26\)
- \(\displaystyle 1.28\)
49.
Answer.
- \(\displaystyle -0.9\)
- No solution
51.
Answer.
- \(\displaystyle \dfrac{1}{\sqrt{2}}\)
- \(\displaystyle 0.9\)
53.
Answer.
\(-6\sqrt{2}\)
55.
Answer.
\(-4\sqrt{3}\)
57.
Answer.
\(6\)
59.
Answer.
b-c.
d. \(t \approx 10\) and \(t \approx 20~~~\) e. \(t \approx 7.5\) to \(t \approx 22\)
61.
Answer.
b-c.
d. High: day 204, \(105\degree\text{;}\) low: day 25, \(66\degree\) e. \(d \approx 128\) to \(d \approx 281\)
63.
Answer.
- \(\displaystyle -0.8,~ 0.6,~ \dfrac{-4}{3}\)
- \(\displaystyle 0.8,~ -0.6,~ \dfrac{-4}{3}\)
- \(\displaystyle -0.8,~ -0.6,~ \dfrac{4}{3}\)
65.
Answer.
- \(\displaystyle 0.92,~ -0.39,~ \dfrac{-92}{39}\)
- \(\displaystyle -0.92,~ 0.39,~ \dfrac{-92}{39}\)
- \(\displaystyle 0.92,~ 0.39,~ \dfrac{92}{39}\)
67.
Answer.
69.
Answer.
71.
Answer.
- Domain: \((-\infty, \infty)\text{,}\) range: \((-\infty, 9]\)
73.
Answer.
- Domain: \(x \ne 0\text{,}\) range: \((-\infty, 2)\)
75.
Answer.
- Domain: \([6, \infty)\text{,}\) range: \([0, \infty)\)
77.
Answer.
- Domain: \([-2,2]\text{,}\) range: \([-2,0]\)
79.
Answer.
-
\(x\) \(0\) \(\dfrac{\pi}{2}\) \(\pi\) \(\dfrac{3\pi}{2}\) \(2\pi\) \(\cos (x)\) \(1\) \(0\) \(-1\) \(0\) \(1\) - Domain: \((-\infty, \infty) \text{,}\) Range: \([-1,1]\)
6.4 Chapter 6 Summary and Review
Chapter 6 Review Problems
1.
Answer.
- \(\displaystyle \dfrac{5\pi}{12}\)
- \(\displaystyle \dfrac{7\pi}{6}\)
- \(\displaystyle \dfrac{17\pi}{9}\)
3.
Answer.
- \(\displaystyle 0.47\)
- \(\displaystyle 2.48\)
- \(\displaystyle 3.80\)
5.
Answer.
- \(\displaystyle 150\degree\)
- \(\displaystyle 54\degree\)
- \(\displaystyle 230\degree\)
7.
Answer.
- \(\displaystyle 114.59\degree\)
- \(\displaystyle 206.26\degree\)
- \(\displaystyle 45.84\degree\)
9.
Answer.
- \(\displaystyle \dfrac{4\pi}{3}\)
- \(\displaystyle \dfrac{7\pi}{6}\)
- \(\displaystyle \dfrac{9\pi}{4}\)
11.
Answer.
- \(\displaystyle \dfrac{1}{8}\)
- \(\displaystyle \dfrac{5}{16}\)
- \(\displaystyle \dfrac{7}{6}\)
13.
Answer.
- II
- I
- IV
15.
Answer.
- \(\displaystyle 0.006,~2.17,~0.0379\)
- \(\displaystyle 0.0379\)
17.
Answer.
\(6885\) mph
19.
Answer.
- \(\displaystyle 0\)
- \(\displaystyle \dfrac{-8}{\sqrt{3}}\)
- \(\displaystyle \dfrac{-1}{2}\)
21.
Answer.
- \(\displaystyle (0.5, 0.8)\)
- \(\displaystyle (-0.4,0.9)\)
- \(\displaystyle (-1.0,0.1)\)
23.
Answer.
- \(\displaystyle (r \cos (\alpha), r \sin (\alpha))\)
- \(\displaystyle (-r \cos (\alpha), r \sin (\alpha))\)
- \(\displaystyle (-r \cos (\alpha), -r \sin (\alpha))\)
- \(\displaystyle (r \cos (\alpha), -r \sin (\alpha))\)
25.
Answer.
\(6\pi\)
27.
Answer.
\(\gt\)
29.
Answer.
\(\lt\)
31.
Answer.
\(9.86\)
33.
Answer.
\(-1.33\)
35.
Answer.
- \(\displaystyle \dfrac{\pi}{6}\)
- \(\displaystyle \dfrac{\pi}{4}\)
- \(\displaystyle \dfrac{3\pi}{8}\)
- \(\displaystyle \dfrac{5\pi}{12}\)
37.
Answer.
- \(\displaystyle 0.34\)
- \(\displaystyle 0.76\)
- \(\displaystyle 1.25\)
- \(\displaystyle 1.5\)
39.
Answer.
\(158.2\degree\)
41.
Answer.
43.
Answer.
- mid: \(y = 5\text{,}\) amp: \(3\text{,}\) period: \(\pi\)
- \(0.86,~2.28,~4.00,~5.42\)
45.
Answer.
- mid: \(y = 10\text{,}\) amp: \(4.8\text{,}\) period: \(2\pi\)
- \(1.93,~4.2\)
47.
Answer.
\(\dfrac{5\pi}{12},~\dfrac{17\pi}{12}\)
49.
Answer.
\(\dfrac{\pi}{3},~\dfrac{2\pi}{3}\)
51.
Answer.
\(\pi\)
53.
Answer.
\(1.37,~4.51\)
55.
Answer.
\(6.02,~3.40\)
57.
Answer.
\(0.32,~5.97\)
59.
Answer.
- \(\displaystyle 1.21,~5.07\)
- \(\displaystyle 0.9394\)
61.
Answer.
- \(\displaystyle 0.40,~2.74\)
- \(\displaystyle 0.3827\)
63.
Answer.
Dom: all real numbers, Rge: \(y \ge 4\)
65.
Answer.
Dom: \(-4 \le s \le 4\text{,}\) Rge: \(-4 \le y \le 0\)
67.
Answer.
- \(\displaystyle x^2 + y^2 = 1\)
- \(\displaystyle (\cos (t), \sin (t))\)
- \(\displaystyle \cos^2 (t) + \sin^2 (t) = 1\)
- Yes
7 Circular Functions
7.1 Transformations of Graphs
Homework 7-1
1.
Answer.
amplitude \(2\text{,}\) period \(2\pi\text{,}\) midline \(y=-3\)
3.
Answer.
amplitude \(1\text{,}\) period \(\dfrac{\pi}{2}\text{,}\) midline \(y=0\)
5.
Answer.
amplitude \(5\text{,}\) period \(6\pi\text{,}\) midline \(y=0\)
7.
Answer.
amplitude \(1\text{,}\) period \(2\text{,}\) midline \(y=1\)
9.
Answer.
11.
Answer.
13.
Answer.
15.
Answer.
17.
Answer.
\(y=-2\sin (x)\)
19.
Answer.
\(y=-2\cos (x)\)
21.
Answer.
\(y=-0.75\cos (x)\)
23.
Answer.
- amplitude \(2\text{,}\) period \(\dfrac{2\pi}{3}\text{,}\) midline \(y=0\)
- \(\displaystyle y=-2\sin (3x)\)
25.
Answer.
- amplitude \(3\text{,}\) period \(2\pi\text{,}\) midline \(y=0\)
- \(\displaystyle y=3\sin \left(\dfrac{x}{2}\right)\)
27.
Answer.
- amplitude \(0.5\text{,}\) period \(4\pi\text{,}\) midline \(y=3.5\)
- \(\displaystyle y=0.5\cos \left(\dfrac{x}{2}\right)+3.5\)
29.
Answer.
- amplitude \(2\text{,}\) period \(4\text{,}\) midline \(y=-1\)
- \(\displaystyle y=-1+2\sin \left(\dfrac{\pi x}{2}\right)\)
31.
Answer.
\(t\) \(2t\) \(\cos (2t)\) \(-5\cos (2t)\) \(2-5\cos (2t)\) \(0\) \(0\) \(1\) \(-5\) \(-3\) \(\dfrac{\pi}{4}\) \(\dfrac{\pi}{2}\) \(0\) \(0\) \(2\) \(\dfrac{\pi}{2}\) \(\pi\) \(-1\) \(5\) \(7\) \(\dfrac{3\pi}{4}\) \(\dfrac{3\pi}{2}\) \(0\) \(0\) \(2\) \(\pi\) \(2\pi\) \(1\) \(-5\) \(-3\)
33.
Answer.
\(t\) \(\dfrac{t}{2}\) \(\cos \left(\dfrac{t}{2}\right)\) \(3\cos \left(\dfrac{t}{2}\right)\) \(1+3\cos \left(\dfrac{t}{2}\right)\) \(0\) \(0\) \(1\) \(3\) \(4\) \(\pi\) \(\dfrac{\pi}{2}\) \(0\) \(0\) \(1\) \(2\pi\) \(\pi\) \(-1\) \(-3\) \(-2\) \(3\pi\) \(\dfrac{3\pi}{2}\) \(0\) \(0\) \(1\) \(4\pi\) \(2\pi\) \(1\) \(3\) \(4\)
35.
Answer.
\(t\) \(\dfrac{t}{3}\) \(\sin \left(\dfrac{t}{3}\right)\) \(2\sin \left(\dfrac{t}{3}\right)\) \(-3+2\sin \left(\dfrac{t}{3}\right)\) \(0\) \(0\) \(0\) \(0\) \(-3\) \(\dfrac{3\pi}{2}\) \(\dfrac{\pi}{2}\) \(1\) \(2\) \(-1\) \(3\pi\) \(\pi\) \(0\) \(0\) \(-3\) \(\dfrac{9\pi}{2}\) \(\dfrac{3\pi}{2}\) \(-1\) \(-2\) \(-5\) \(6\pi\) \(2\pi\) \(0\) \(0\) \(-3\)
37.
Answer.
39.
Answer.
41.
Answer.
43.
Answer.
45.
Answer.
- \(\displaystyle W(t)=12+8\cos \left(\dfrac{\pi t}{6}\right)\)
47.
Answer.
- \(\displaystyle h=10+14\cos \left(\dfrac{\pi t}{5}\right)\)
49.
Answer.
\(H=12-2.4\cos \left(\dfrac{\pi t}{6}\right)\)
51.
Answer.
\(y=155\cos(120 \pi t)\)
53.
Answer.
-
\(x\) \(\dfrac{-\pi}{4}\) \(\dfrac{-\pi}{8}\) \(0\) \(\dfrac{\pi}{8}\) \(\dfrac{\pi}{4}\) \(\tan 2x\) undef \(-1\) \(0\) \(1\) undef - period \(\dfrac{\pi}{2}\text{,}\) midline \(y=0\)
55.
Answer.
-
\(x\) \(\dfrac{-\pi}{6}\) \(\dfrac{-\pi}{12}\) \(0\) \(\dfrac{\pi}{12}\) \(\dfrac{\pi}{6}\) \(4+2\tan 3x\) undef \(2\) \(0\) \(6\) undef - period \(\dfrac{\pi}{3}\text{,}\) midline \(y=4\)
57.
Answer.
-
\(x\) \(-2\pi\) \(-\pi\) \(0\) \(\pi\) \(2\pi\) \(3-\tan \left(\dfrac{x}{4}\right)\) undef \(4\) \(0\) \(2\) undef - period \(4\pi\text{,}\) midline \(y=3\)
59.
Answer.
\(\dfrac{\pi}{12}\text{,}\) \(~\dfrac{5\pi}{12}\text{,}\) \(~\dfrac{7\pi}{12}\text{,}\) \(~\dfrac{11\pi}{12}\text{,}\) \(~\dfrac{13\pi}{12}\text{,}\) \(~\dfrac{17\pi}{12}\text{,}\) \(~\dfrac{19\pi}{12}\text{,}\) \(~\dfrac{23\pi}{12}\)
61.
Answer.
\(\dfrac{7\pi}{12}\text{,}\) \(~\dfrac{11\pi}{12}\text{,}\) \(~\dfrac{19\pi}{12}\text{,}\) \(~\dfrac{23\pi}{12}\)
63.
Answer.
\(\dfrac{\pi}{12}\text{,}\) \(~\dfrac{5\pi}{12}\text{,}\) \(~\dfrac{3\pi}{4}\text{,}\) \(~\dfrac{13\pi}{12}\text{,}\) \(~\dfrac{17\pi}{12}\text{,}\) \(~\dfrac{7\pi}{4}\)
65.
Answer.
\(1.83,~2.88,~4.97,~6.02\)
67.
Answer.
\(4.19\)
69.
Answer.
\(0.28,~1.81,~2.37,~3.91,~4.47,~6.00\)
7.2 The General Sinusoidal Function
Homework 7-2
1.
Answer.
\(x\) \(-\pi\) \(\dfrac{-5\pi}{6}\) \(\dfrac{-2\pi}{3}\) \(\dfrac{-\pi}{2}\) \(\dfrac{-\pi}{3}\) \(\dfrac{-\pi}{6}\) \(0\) \(\dfrac{\pi}{6}\) \(\dfrac{\pi}{3}\) \(\dfrac{\pi}{2}\) \(\dfrac{2\pi}{3}\) \(\dfrac{5\pi}{6}\) \(\pi\) \(f(x)\) \(0\) \(\dfrac{-1}{2}\) \(\dfrac{-\sqrt{3}}{2}\) \(-1\) \(\dfrac{-\sqrt{3}}{2}\) \(\dfrac{-1}{2}\) \(0\) \(\dfrac{1}{2}\) \(\dfrac{\sqrt{3}}{2}\) \(1\) \(\dfrac{\sqrt{3}}{2}\) \(\dfrac{1}{2}\) \(0\) \(g(x)\) \(\dfrac{\sqrt{3}}{2}\) \(\dfrac{1}{2}\) \(0\) \(\dfrac{-1}{2}\) \(\dfrac{-\sqrt{3}}{2}\) \(-1\) \(\dfrac{-\sqrt{3}}{2}\) \(\dfrac{-1}{2}\) \(0\) \(\dfrac{1}{2}\) \(\dfrac{\sqrt{3}}{2}\) \(1\) \(\dfrac{\sqrt{3}}{2}\) - \(\dfrac{\pi}{3}\) to the right
- \(\displaystyle \dfrac{5\pi}{6}\)
- \(\displaystyle \dfrac{-2\pi}{3},~\dfrac{\pi}{3}\)
3.
Answer.
\(x\) \(-\pi\) \(\dfrac{-3\pi}{4}\) \(\dfrac{-\pi}{2}\) \(\dfrac{-\pi}{4}\) \(0\) \(\dfrac{\pi}{4}\) \(\dfrac{\pi}{2}\) \(\dfrac{3\pi}{4}\) \(\pi\) \(f(x)\) \(0\) \(1\) undef \(-1\) \(0\) \(1\) undef \(-1\) \(0\) \(g(x)\) \(1\) undef \(-1\) \(0\) \(1\) undef \(-1\) \(0\) \(1\) - \(\dfrac{\pi}{4}\) to the left
- \(\displaystyle -\pi,~ 0,~ \pi\)
- \(\displaystyle \dfrac{-\pi}{4},~\dfrac{-3\pi}{4}\)
5.
Answer.
- amplitude 2, shift \(\dfrac{\pi}{6}\) to the left
\(x\) \(x+\dfrac{\pi}{6}\) \(\cos\left(x+\dfrac{\pi}{6}\right) \) \(-2\cos\left(x+\dfrac{\pi}{6}\right)\) \(\dfrac{-7\pi}{6}\) \(-\pi\) \(-1\) \(2\) \(\dfrac{-2\pi}{3}\) \(\dfrac{-\pi}{2}\) \(0\) \(0\) \(\dfrac{-\pi}{6}\) \(0\) \(1\) \(-2\) \(\dfrac{\pi}{3}\) \(\dfrac{\pi}{2}\) \(0\) \(0\) \(\dfrac{5\pi}{6}\) \(\pi\) \(-1\) \(2\) \(\dfrac{4\pi}{3}\) \(\dfrac{3\pi}{2}\) \(0\) \(0\) \(\dfrac{11\pi}{6}\) \(2\pi\) \(1\) \(-2\) - \(\displaystyle \dfrac{\pi}{2},~ \dfrac{7\pi}{6}\)
- \(\displaystyle \dfrac{\pi}{3},~ \dfrac{4\pi}{3}\)
7.
Answer.
- \(\displaystyle f(x)=\sin \left(x+\dfrac{\pi}{4}\right)\)
- \(\displaystyle f(x)=\cos \left(x-\dfrac{\pi}{4}\right)\)
9.
Answer.
- \(\displaystyle f(x)=\tan \left(x-\dfrac{\pi}{3}\right)\)
- \(\displaystyle f(x)=\tan \left(x+\dfrac{2\pi}{3}\right)\)
11.
Answer.
- period \(\pi\text{,}\) shift \(\dfrac{\pi}{6}\) to the right
\(x\) \(2x\) \(2x-\dfrac{\pi}{3} \) \(\cos\left(2x-\dfrac{\pi}{3}\right)\) \(\dfrac{\pi}{6}\) \(\dfrac{\pi}{3}\) \(0\) \(1\) \(\dfrac{5\pi}{12}\) \(\dfrac{5\pi}{6}\) \(\dfrac{\pi}{2}\) \(0\) \(\dfrac{2\pi}{3}\) \(\dfrac{4\pi}{3}\) \(\pi\) \(-1\) \(\dfrac{11\pi}{12}\) \(\dfrac{11\pi}{6}\) \(\dfrac{3\pi}{2}\) \(0\) \(\dfrac{7\pi}{6}\) \(\dfrac{7\pi}{3}\) \(2\pi\) \(1\) - \(\displaystyle \dfrac{\pi}{6},~ \dfrac{7\pi}{6}\)
- \(\displaystyle \dfrac{5\pi}{12},~ \dfrac{11\pi}{12},~ \dfrac{13\pi}{6},~ \dfrac{23\pi}{12}\)
13.
Answer.
- period 2, shift \(\dfrac{1}{3}\) to the left
\(x\) \(\pi x\) \(\pi x+\dfrac{\pi}{3} \) \(\sin\left(\pi x+\dfrac{\pi}{3}\right)\) \(\dfrac{-1}{3}\) \(\dfrac{-\pi}{3}\) \(0\) \(0\) \(\dfrac{1}{6}\) \(\dfrac{\pi}{6}\) \(\dfrac{\pi}{2}\) \(1\) \(\dfrac{2}{3}\) \(\dfrac{2\pi}{3}\) \(\pi\) \(0\) \(\dfrac{7}{6}\) \(\dfrac{7\pi}{6}\) \(\dfrac{3\pi}{2}\) \(-1\) \(\dfrac{5}{3}\) \(\dfrac{5\pi}{3}\) \(2\pi\) \(0\) - \(\displaystyle \dfrac{-11}{6},~ \dfrac{1}{6}\)
- \(\displaystyle \dfrac{-4}{3},~ \dfrac{-1}{3},~ \dfrac{2}{3},~ \dfrac{5}{3}\)
15.
Answer.
- midline \(y=4\text{,}\) period \(4\pi\text{,}\) horizontal shift \(\dfrac{\pi}{3}\) to the right, amplitude 3
\(x\) \(\dfrac{x}{2}\) \(\dfrac{x}{2}-\dfrac{\pi}{6} \) \(\sin\left(\dfrac{x}{2}-\dfrac{\pi}{6}\right)\) \(3\sin\left(\dfrac{x}{2}-\dfrac{\pi}{6}\right)+4\) \(\dfrac{\pi}{3}\) \(\dfrac{\pi}{6}\) \(0\) \(0\) \(4\) \(\dfrac{4\pi}{3}\) \(\dfrac{2\pi}{3}\) \(\dfrac{\pi}{2}\) \(1\) \(7\) \(\dfrac{7\pi}{3}\) \(\dfrac{7\pi}{6}\) \(\pi\) \(0\) \(3\) \(\dfrac{10\pi}{3}\) \(\dfrac{5\pi}{3}\) \(\dfrac{3\pi}{2}\) \(-1\) \(1\) \(\dfrac{13\pi}{3}\) \(\dfrac{13\pi}{6}\) \(2\pi\) \(0\) \(4\) - no solution for \(0 \le x \le 2\pi\)
- \(\displaystyle \dfrac{\pi}{3}\)
17.
Answer.
\(y=2\sin\left(\dfrac{2\pi}{3}(x+4)\right)+5\)
19.
Answer.
\(y=-5\cos\left(\dfrac{\pi x}{180}\right)+12\)
21.
Answer.
- \(\displaystyle f(x)=3\sin \left(x+\dfrac{2\pi}{3}\right)\)
- \(\displaystyle f(x)=3\cos \left(x+\dfrac{\pi}{6}\right)\)
23.
Answer.
- \(\displaystyle f(x)=2\sin (2(x-\dfrac{\pi}{4}))\)
- \(\displaystyle f(x)=-2\cos (2x)\)
25.
Answer.
- \(\displaystyle f(x)=4\sin \left[\dfrac{1}{4}\left(x-\dfrac{7\pi}{3}\right)\right]\)
- \(\displaystyle f(x)=-4\cos \left[\dfrac{1}{4}\left(x-\dfrac{\pi}{3}\right)\right]\)
27.
Answer.
- midline \(T=35.35\text{,}\) period 12, amplitude 36.95
- \(\displaystyle T(m)=-36.95 \cos \left(\dfrac{\pi}{6} m\right)+35.35\)
29.
Answer.
- midline \(h=1.4\text{,}\) period \(\dfrac{2 \pi}{0.51} \approx{12.32}\text{,}\) amplitude 1.4
- high 11:10 am, low 5:19 pm
31.
Answer.
- amplitude 3.2, period 2, midline \(y=2\)
- \(\displaystyle f(t)=2+3.2\cos (\pi t)\)
33.
Answer.
- amplitude 5, period 1, midline \(y=0\)
- \(\displaystyle H(x)=5\sin (2\pi x) + 5\)
7.3 Solving Equations
Homework 7-3
1.
Answer.
\(\dfrac{3\pi}{8}\text{,}\) \(~ \dfrac{7\pi}{8}\text{,}\) \(~ \dfrac{11\pi}{8}\text{,}\) \(~ \dfrac{15\pi}{8}\)
3.
Answer.
\(0\text{,}\) \(~ \dfrac{\pi}{2}\text{,}\) \(~ \pi\text{,}\) \(~ \dfrac{3\pi}{2}\text{,}\) \(~ 2\pi\)
5.
Answer.
\(\dfrac{2\pi}{9}\text{,}\) \(~ \dfrac{4\pi}{9}\text{,}\) \(~ \dfrac{8\pi}{9}\text{,}\) \(~ \dfrac{10\pi}{9}\text{,}\) \(~ \dfrac{14\pi}{9}\text{,}\) \(~ \dfrac{16\pi}{9}\)
7.
Answer.
\(\dfrac{\pi}{12}\text{,}\) \(~ \dfrac{5\pi}{12}\text{,}\) \(~ \dfrac{13\pi}{12}\text{,}\) \(~ \dfrac{17\pi}{12}\)
9.
Answer.
\(\dfrac{\pi}{18}\text{,}\) \(~ \dfrac{7\pi}{18}\text{,}\) \(~ \dfrac{13\pi}{18}\text{,}\) \(~ \dfrac{19\pi}{18}\text{,}\) \(~ \dfrac{25\pi}{18}\text{,}\) \(~ \dfrac{31\pi}{18}\)
11.
Answer.
\(0.491,~ 2.651,~ 3.632,~ 5.792\)
13.
Answer.
\(0.540\text{,}\) \(~ 1.325\text{,}\) \(~ 2.110\text{,}\) \(~ 2.896\text{,}\) \(~ 3.681\text{,}\) \(~ 4.467\text{,}\) \(~ 5.252\text{,}\) \(~ 6.037\)
15.
Answer.
\(1.114\text{,}\) \(~ 2.027\text{,}\) \(~ 3.209\text{,}\) \(~ 4.122\text{,}\) \(~ 5.303\text{,}\) \(~ 6.216\)
17.
Answer.
\(0.702\text{,}\) \(~ 2.440\text{,}\) \(~ 3.843\text{,}\) \(~ 5.582\)
19.
Answer.
\(0\text{,}\) \(~ 1\text{,}\) \(~ 2\text{,}\) \(~ 3\text{,}\) \(~ 4\text{,}\) \(~ 5\text{,}\) \(~ 6\)
21.
Answer.
\(\dfrac{\pi}{6}\text{,}\) \(~ \dfrac{2\pi}{3}\text{,}\) \(~ \dfrac{7\pi}{6}\text{,}\) \(~ \dfrac{5\pi}{3}\)
23.
Answer.
\(\dfrac{5\pi}{12}\text{,}\) \(~ \dfrac{7\pi}{12}\text{,}\) \(~ \dfrac{13\pi}{12}\text{,}\) \(~ \dfrac{5\pi}{4}\text{,}\) \(~ \dfrac{7\pi}{4}\text{,}\) \(~ \dfrac{23\pi}{12}\)
25.
Answer.
\(\dfrac{3\pi}{2}\)
27.
Answer.
\(\dfrac{7}{6}\text{,}\) \(~ \dfrac{11}{6}\text{,}\) \(~ \dfrac{19}{6}\text{,}\) \(~ \dfrac{23}{6}\text{,}\) \(~ \dfrac{31}{6}\text{,}\) \(~ \dfrac{35}{6}\)
29.
Answer.
\(1.14\text{,}\) \(~ 1.62\text{,}\) \(~ 3.23\text{,}\) \(~ 3.72\text{,}\) \(~ 5.24\text{,}\) \(~ 5.81\)
31.
Answer.
\(0.44\text{,}\) \(~ 1.44\text{,}\) \(~ 2.44\text{,}\) \(~ 3.44\text{,}\) \(~ 4.44\text{,}\) \(~ 5.44\)
33.
Answer.
\(0.01\text{,}\) \(~ 3.39\text{,}\) \(~ 6.01\)
35.
Answer.
\(0.564\text{,}\) \(~ 1.182\text{,}\) \(~ 2.658\text{,}\) \(~ 3.276\text{,}\) \(~ 4.752\text{,}\) \(~ 5.371\)
37.
Answer.
\(0.423\text{,}\) \(~ 2.977\text{,}\) \(~ 4.423\)
39.
Answer.
\(1.165,~ 4.165\)
41.
Answer.
\(2.251\)
43.
Answer.
- \(\displaystyle P(t)=4000\cos\left(\dfrac{\pi}{6}t\right)+46,000\)
- \(t=\cos^{-1}\left( \dfrac{-1}{4} \right)\cdot\dfrac{6}{\pi}\approx3.48\) months (Dec) or \(t=12-\cos^{-1}\left( \frac{-1}{4} \right)\cdot\frac{6}{\pi}\approx 8.52\) months (June)
- \(P(t)\) is less than 45,000 between \(A\) and \(B\text{.}\)
45.
Answer.
- \(\displaystyle h(t)=11-10\cos\left(\dfrac{\pi}{30}t\right)\)
- \(t=\cos\left(-0.7 \right)\cdot \dfrac{30}{\pi}\approx 22.40\) sec or \(t=60-\cos\left(-0.7 \right)\cdot \dfrac{30}{\pi}\approx 37.60\) sec
- Delbert is above 18 m between \(A\) and \(B\text{.}\)
7.4 Chapter 7 Summary and Review
Review Problems
1.
Answer.
amp: \(2\text{,}\) period: \(\dfrac{2\pi}{3} \text{;}\) mid: \(y=4\)
3.
Answer.
amp: \(2.5\text{,}\) period: \(2\text{;}\) mid: \(y=-2\)
5.
Answer.
7.
Answer.
9.
Answer.
\(y=3+2\sin (x) \)
11.
Answer.
\(y=4-3\sin \left(\dfrac{x}{4}\right) \)
13.
Answer.
- period: \(4\pi\text{,}\) shift: \(\dfrac{\pi}{3}\) left
\(x\) \(\dfrac{x}{2}\) \(\dfrac{x}{2}+\dfrac{\pi}{6} \) \(\sin\left(\dfrac{x}{2}+\dfrac{\pi}{6}\right)\) \(\dfrac{-2\pi}{3}\) \(\dfrac{\pi}{3}\) \(\dfrac{-\pi}{6}\) \(\dfrac{-1}{2}\) \(\dfrac{-\pi}{3}\) \(\dfrac{-\pi}{6}\) \(0\) \(0\) \(0\) \(0\) \(\dfrac{\pi}{6}\) \(\dfrac{1}{2}\) \(\dfrac{\pi}{6}\) \(\dfrac{\pi}{12}\) \(\dfrac{\pi}{4}\) \(\dfrac{1}{\sqrt{2}}\) \(\dfrac{\pi}{3}\) \(\dfrac{\pi}{6}\) \(\dfrac{\pi}{3}\) \(\dfrac{\sqrt{3}}{2}\) \(\dfrac{2\pi}{3}\) \(\dfrac{\pi}{3}\) \(\dfrac{\pi}{2}\) \(1\) \(\pi\) \(\dfrac{\pi}{2}\) \(\dfrac{2\pi}{3}\) \(\dfrac{\sqrt{3}}{2}\) - \(\displaystyle \dfrac{2\pi}{3} \)
- \(\displaystyle \dfrac{-\pi}{3} \)
15.
Answer.
- mid: \(y=20\text{,}\) period: 0, amp: 5
-
Fill in the table of values.
\(x\) \(\dfrac{\pi}{30}x \) \(\cos\left(\dfrac{\pi}{30}x\right)\) \(20-5\cos\left(\dfrac{\pi}{30}x\right)\) \(-5\) \(\dfrac{-\pi}{6}\) \(\dfrac{\sqrt{3}}{2}\) \(20-\dfrac{\sqrt{3}}{2}\) \(0\) \(0\) \(1\) \(15\) \(5\) \(\dfrac{\pi}{6}\) \(\dfrac{\sqrt{3}}{2}\) \(20-\dfrac{\sqrt{3}}{2}\) \(10\) \(\dfrac{\pi}{3}\) \(\dfrac{1}{2}\) \(17.5\) \(15\) \(\dfrac{\pi}{2}\) \(0\) \(20\) \(50\) \(\pi\) \(-1\) \(25\) - 30
- 15, 45
17.
Answer.
19.
Answer.
- 0.57, 3.07, 3.71
21.
Answer.
\(y=85.5-19.5\cos\left(\dfrac{\pi}{6}t\right) \)
23.
Answer.
- amp: 3, period: 12, midline: \(y=15\)
- \(\displaystyle y=15-3\cos\left(\frac{\pi}{6}t\right) \)
25.
Answer.
\(\dfrac{7\pi}{12}\text{,}\) \(\dfrac{11\pi}{12}\text{,}\) \(\dfrac{19\pi}{12}\text{,}\) \(\dfrac{23\pi}{12}\)
27.
Answer.
\(0\text{,}\) \(\dfrac{\pi}{4}\text{,}\) \(\dfrac{\pi}{2}\text{,}\) \(\dfrac{3\pi}{4}\text{,}\) \(\pi\text{,}\) \(\dfrac{5\pi}{4}\text{,}\) \(\dfrac{7\pi}{4}\text{,}\) \(2\pi\)
29.
Answer.
0.066, 1.113, 2.160, 3.207, 4.255, 5.302
31.
Answer.
1.150, 1.991, 4.292, 5.133
33.
Answer.
\(\dfrac{\pi}{24} \text{,}\) \(\dfrac{5\pi}{24} \text{,}\) \(\dfrac{25\pi}{24} \text{,}\) \(\dfrac{29\pi}{24} \)
35.
Answer.
No solution
37.
Answer.
0.375, 1.422, 2.470, 3.517, 4.564, 5.611
39.
Answer.
2.120, 4.880
8 More Functions and Identities
8.1 Sum and Difference Formulas
Homework 8-1
1.
Answer.
\(x_2=x_1\text{,}\) \(y_2=-y_1\text{,}\) and \(r_2=r_1\text{.}\) Thus, \(\cos(-\alpha)=\dfrac{x_2}{r_2} =\dfrac{x_1}{r_1}=\cos(\alpha) \text{,}\) \(\sin(-\alpha)=\dfrac{y_2}{r_2} =\dfrac{-y_1}{r_1}=-\sin(\alpha) \text{,}\) and \(\tan(-\alpha)=\dfrac{y_2}{x_2} =\dfrac{-y_1}{x_1}=-\tan(\alpha) \text{.}\)
3.
Answer.
\(\dfrac{-(\sqrt{2} + \sqrt{6})}{4}\)
5.
Answer.
\(\cos(0.3-2x)=0.24\text{,}\) \(\sin(0.3-2x)=0.97\)
7.
Answer.
\(\cos(45\degree + 45\degree)=\cos(90\degree)=0\text{,}\) but \(\cos (45\degree) +\cos (45\degree) = \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\sqrt{2} \)
9.
Answer.
\(\tan(87\degree -29\degree)\approx 1.600\text{,}\) but \(\tan (87\degree) -\tan (29\degree) \approx 18.527 \)
11.
Answer.
The curves are different.
13.
Answer.
- \(\displaystyle \dfrac{63}{65} \)
- \(\displaystyle \dfrac{-16}{65} \)
- \(\displaystyle \dfrac{-16}{63} \)
15.
Answer.
- \(\displaystyle \dfrac{44}{117} \)
- \(\displaystyle \dfrac{4}{3} \)
17.
Answer.
- \(\displaystyle \dfrac{36}{85} \)
- \(\displaystyle \dfrac{-13}{84} \)
19.
Answer.
- \(\displaystyle \dfrac{-16}{65} \)
- \(\displaystyle \dfrac{63}{65} \)
- \(\displaystyle \dfrac{-16}{63} \)
21.
Answer.
\(\cos (15\degree)=\dfrac{\sqrt{6}+\sqrt{2}}{4} \text{,}\) \(\tan (15\degree) = 2-\sqrt{3}\)
23.
Answer.
\(\dfrac{6\sqrt{2}+1}{10}\)
25.
Answer.
\(\cos (\theta)\)
27.
Answer.
\(\dfrac{\sqrt{3}}{2}\cos (t) -\dfrac{1}{2}\sin (t) \)
29.
Answer.
\(\dfrac{\sqrt{3}\tan\beta -1}{\sqrt{3}+\tan\beta} \)
31.
Answer.
No
33.
Answer.
No
35.
Answer.
\(1=2\left(\dfrac{1}{\sqrt{2}} \right)\left(\dfrac{1}{\sqrt{2}} \right) \)
37.
Answer.
\(\frac{1}{2} =\left(\dfrac{\sqrt{3}}{2} \right)^2 - \left(\dfrac{1}{2} \right)^2 \)
39.
Answer.
False, but \(\cos (2\alpha)=2(0.32)^2-1 \)
41.
Answer.
False, but \(2\theta = \sin^{-1}(h) \)
43.
Answer.
\(\sin (68\degree)\)
45.
Answer.
\(\cos\left(\dfrac{\pi}{8}\right) \)
47.
Answer.
\(\cos (6\theta)\)
49.
Answer.
\(\sin 10t\)
51.
Answer.
\(\tan 128\degree\)
53.
Answer.
\(\cos (4\beta)\)
55.
Answer.
- \(\displaystyle \dfrac{5}{6} \)
- \(\displaystyle \dfrac{\sqrt{11}}{6} \)
- \(\displaystyle \dfrac{5}{\sqrt{11}} \)
- \(\displaystyle \dfrac{5\sqrt{11}}{18} \)
- \(\displaystyle \dfrac{-7}{18} \)
- \(\displaystyle \dfrac{-5\sqrt{11}}{7} \)
57.
Answer.
- \(\displaystyle \dfrac{1}{\sqrt{w^2+1}} \)
- \(\displaystyle \dfrac{w}{\sqrt{w^2+1}} \)
- \(\displaystyle \dfrac{1}{w} \)
- \(\displaystyle \dfrac{2w}{w^2+1} \)
- \(\displaystyle \dfrac{w^2 -1}{w^2+1} \)
- \(\displaystyle \dfrac{2w}{w^2-1} \)
59.
Answer.
- \(\displaystyle \dfrac{-5}{13} \)
- \(\displaystyle \dfrac{-120}{169} \)
- \(\displaystyle \dfrac{119}{169} \)
- \(\displaystyle \dfrac{-120}{119} \)
61.
Answer.
- \(\displaystyle \dfrac{8}{15} \)
- \(\displaystyle \dfrac{-15}{17} \)
- \(\displaystyle \dfrac{-8}{17} \)
63.
Answer.
- \(\displaystyle 2\sin(\theta) \cdot \cos(\theta) +\sqrt{2}\cos(\theta)=0 \)
- \(\dfrac{\pi}{2} \text{,}\) \(\dfrac{5\pi}{4} \text{,}\) \(\dfrac{3\pi}{2} \text{,}\) \(\dfrac{7\pi}{4} \)
65.
Answer.
- \(\displaystyle 2\cos^2 (t) -5\cos (t) +2=0 \)
- \(\dfrac{\pi}{3} \text{,}\) \(\dfrac{5\pi}{3} \)
67.
Answer.
- \(\displaystyle \frac{2\tan(\beta)}{1-\tan^2(\beta)}+2\sin(\beta)=0 \)
- \(0\text{,}\) \(\dfrac{\pi}{3}\text{,}\) \(\pi\) , \(\dfrac{5\pi}{3} \)
69.
Answer.
- \(\displaystyle 3\cos(\phi) - \cos (\phi)=\sqrt{3} \)
- \(\dfrac{\pi}{6}\text{,}\) \(\dfrac{11\pi}{6} \)
71.
Answer.
- \(\displaystyle \sin (3\phi) =1\)
- \(\dfrac{\pi}{6}\) , \(\dfrac{5\pi}{6}\) , \(\dfrac{3\pi}{2} \)
73.
Answer.
- \(\displaystyle \cos (\theta + 90\degree)=-\sin\theta \)
- \(\displaystyle \sin (\theta + 90\degree)=\cos\theta\)
75.
Answer.
- \(\displaystyle \cos \left(\dfrac{\pi}{2} -\theta\right) = \cos\frac{\pi}{2} \cos(\theta) + \sin \frac{\pi}{2}\sin\theta = \sin (\theta)\)
- \(\displaystyle \sin \left(\dfrac{\pi}{2} -\theta\right) = \sin\frac{\pi}{2} \cos(\theta) - \cos \frac{\pi}{2}\sin(\theta)= \cos (\theta)\)
77.
Answer.
\(\begin{aligned}[t]\sin(2\theta) \amp=\sin(\theta + \theta)\\ \amp= \sin(\theta)\cos(\theta) + \sin(\theta)\cos(\theta) \\ \amp= 2\sin(\theta)\cos(\theta) \end{aligned}\)
79.
Answer.
- Not an identity.
- \(\beta=\pi\) (many answers possible)
81.
Answer.
Identity
83.
Answer.
- Not an identity.
- \(\theta=0\) (many answers possible)
85.
Answer.
Identity
87.
Answer.
Identity
89.
Answer.
- \(\displaystyle l_1=\sin(\alpha), \, l_2=\cos(\alpha) \)
- \(\theta_1\) and \(\beta\) are both complements of \(\phi\text{;}\) \(\theta_2\) and \(\alpha+\beta\) are alternate interior angles
- \(s_1=\cos(\alpha+\beta) \text{,}\) \(s_2=\sin(\alpha+\beta) \)
- \(s_3=\sin(\alpha)\sin(\beta) \text{,}\) \(s_4=\sin(\alpha)\cos(\beta) \)
- \(s_5=\cos(\alpha)\cos(\beta) \text{,}\) \(s_6=\cos(\alpha)\sin(\beta) \)
- \(\sin(\alpha+\beta) = \sin(\alpha)\cos(\beta) +\cos(\alpha)\sin(\beta) \text{,}\) \(\cos(\alpha+\beta) = \cos(\alpha)\cos(\beta) +\sin(\alpha)\sin(\beta) \)
91.
Answer.
- \(\displaystyle (AB)^2=2-2\cos(\alpha-\beta)\)
- \(\displaystyle (AB)^2=(\cos(\alpha)-\cos(\beta))^2 + (\sin(\alpha) - \sin(\beta))^2 \)
- \(\displaystyle \begin{aligned}[t] 2-2\cos(\alpha-\beta)\amp = (\cos(\alpha)-\cos(\beta))^2 + (\sin(\alpha) - \sin(\beta))^2 \\ 2-2\cos(\alpha-\beta)\amp = \cos^2(\alpha) -2\cos(\alpha)\cos(\beta) + \cos^2 (\beta) + \,\\ \amp\hphantom{000000000} +\sin^2 (\alpha) - 2\sin(\alpha)\sin(\beta) + \sin^2(\beta) \\ 2-2\cos(\alpha-\beta)\amp = 1+1 - 2(\cos(\alpha) \cos(\beta) - \sin(\alpha)\sin(\beta)) \\ -2\cos(\alpha-\beta)\amp = -2(\cos(\alpha) \cos(\beta) - \sin(\alpha)\sin(\beta)) \\ \cos(\alpha-\beta)\amp = \cos(\alpha) \cos(\beta) - \sin(\alpha)\sin(\beta)) \end{aligned}\)
8.2 Inverse Trigonometric Functions
Homework 8-2
1.
Answer.
No inverse: Some horizontal lines intersect the curve in more than one point.
3.
Answer.
Inverse exists: The function is 1-1.
5.
Answer.
No inverse
7.
Answer.
No inverse
9.
Answer.
\(16.5\degree\)
11.
Answer.
\(46.4\degree\)
13.
Answer.
\(=51.9\degree\)
15.
Answer.
\(\dfrac{3\pi}{4} \)
17.
Answer.
\(\dfrac{-\pi}{6}\)
19.
Answer.
\(\dfrac{\pi}{6}\)
21.
Answer.
- \(\displaystyle h=500 \tan(\theta)\)
- \(\displaystyle \theta=\tan^{-1}\left(\dfrac{h}{500} \right) \)
- \(\theta=\tan^{-1}(2) \text{,}\) so the angle of elevation is \(\tan^{-1} (2)\approx 63.4\degree \) when the rocket is 1000 yd high.
23.
Answer.
- \(\displaystyle d=\dfrac{50}{\tan\theta}\)
- \(\displaystyle \theta=\tan^{-1}\left(\dfrac{50}{d} \right) \)
- \(\theta=\tan^{-1}(0.25) \text{;}\) the bilboard subtends an angle of \(\tan^{-1}(0.25) \approx 14\degree \) at a distance of 200 ft.
25.
Answer.
- \(\displaystyle \alpha=\tan^{-1}\left(\dfrac{1}{x}\right) \)
- \(\displaystyle \beta=\tan^{-1}\left(\dfrac{5}{x} \right) - \tan^{-1}\left(\dfrac{1}{x}\right) \)
- \(\beta=45\degree - \tan^{-1}\left(\dfrac{1}{5}\right) \text{,}\) so the painting subtends an angle of \(45\degree - \tan^{-1}\left(\dfrac{1}{5}\right) \approx 33.7\degree \) when Martin is 5 meters from the wall.
27.
Answer.
\(t=\dfrac{1}{2\pi\omega}\left( \sin^{-1}\dfrac{V}{V_0}-\phi \right) \)
29.
Answer.
\(A=\sin^{-1}\left(\dfrac{a\sin (B)}{b} \right) \)
31.
Answer.
\(\theta= \pm \cos^{-1}\left(\dfrac{k}{PR^4} \right) \)
33.
Answer.
\(\dfrac{2}{\sqrt{5}} \)
35.
Answer.
\(\dfrac{1}{\sqrt{5}} \)
37.
Answer.
\(\dfrac{5}{7} \)
39.
Answer.
\(\dfrac{\sqrt{1-x^2}}{x} \)
41.
Answer.
\(\sqrt{1-h^2} \)
43.
Answer.
\(\dfrac{2t}{\sqrt{4t^2+1}} \)
45.
Answer.
\(x\) | \(-1\) | \(\frac{-\sqrt{3}}{2}\) | \(\frac{-\sqrt{2}}{2}\) | \(\frac{-1}{2}\) | \(0\) | \(\frac{1}{2}\) | \(\frac{\sqrt{2}}{2}\) | \(\frac{\sqrt{3}}{2}\) | \(1\) |
\(\cos^{-1}(x)\) | \(\pi\) | \(\frac{5\pi}{6} \) | \(\frac{3\pi}{4} \) | \(\frac{2\pi}{3} \) | \(\frac{\pi}{2} \) | \(\frac{\pi}{3} \) | \(\frac{\pi}{4} \) | \(\frac{\pi}{6} \) | \(0 \) |
47.
Answer.
\(x\) | \(-\sqrt{3}\) | \(-1\) | \(\frac{-1}{\sqrt{3}}\) | \(0\) | \(\frac{1}{\sqrt{3}}\) | \(1\) | \(\sqrt{3}\) |
\(\cos^{-1}(x)\) | \(\frac{-\pi}{2} \) | \(\frac{-\pi}{3} \) | \(\frac{-\pi}{6} \) | \(0 \) | \(\frac{\pi}{6} \) | \(\frac{\pi}{4} \) | \(\frac{\pi}{3} \) |
49.
Answer.
a–b.
c. No
51.
Answer.
a.
c. No
53.
Answer.
\(\dfrac{8}{17} \)
55.
Answer.
\(\dfrac{16}{65} \)
57.
Answer.
\(\dfrac{4\sqrt{2} }{7} \)
59.
Answer.
- \(\displaystyle \dfrac{-63}{65} \)
- \(\displaystyle \dfrac{16}{65} \)
- \(\displaystyle \dfrac{-33}{65} \)
- \(\displaystyle \dfrac{56}{65} \)
61.
Answer.
\(1\)
63.
Answer.
- \(\displaystyle \dfrac{2x}{x^2+1} \)
- \(\displaystyle 1-x^2\)
65.
Answer.
\(\sin (2\theta)= \dfrac{2x\sqrt{25-x^2}}{25} \text{,}\) \(\cos (2\theta)= \dfrac{25-2x^2}{25} \)
67.
Answer.
\(\arctan\left(\dfrac{x}{3}+\dfrac{3x}{2(x^2+9)}\right) \)
69.
Answer.
- \(\displaystyle -1\le x\le 1\)
- Yes.
- All
- \(x\lt \dfrac{-\pi}{2} \) or \(x\gt\dfrac{\pi}{2} \)
71.
Answer.
- Domain: \(-1\le x \le 1\text{,}\) range: \(\left\{\dfrac{\pi}{2}\right\} \)
- Let \(\theta=\sin^{-1}(x)\text{.}\) Then \(x=\sin(\theta)= \cos\left(\dfrac{\pi}{2} - \theta \right) \) and \(\cos^{-1}(x)= \dfrac{\pi}{2} - \theta \text{.}\) So \(~\sin^{-1}(x)+\cos^{-1}(x) = \theta + \left(\dfrac{\pi}{2} - \theta\right) = \dfrac{\pi}{2} \) .
73.
Answer.
- \(\displaystyle \dfrac{\theta}{2} \)
- \(\displaystyle t=\sin(\theta)\)
- \(\displaystyle \frac{1}{2}\arcsin (t) \)
8.3 The Reciprocal Functions
Homework 8-3
1.
Answer.
\(2.203\)
3.
Answer.
\(0.466\)
5.
Answer.
\(5.883\)
7.
Answer.
\(1.203\)
9.
Answer.
\(2\)
11.
Answer.
\(1\)
13.
Answer.
\(\dfrac{-2\sqrt{3}}{3}\)
15.
Answer.
\(\sqrt{2}\)
17.
Answer.
\(\theta\) | \(0\) | \(\dfrac{\pi}{6}\) | \(\dfrac{\pi}{4}\) | \(\dfrac{\pi}{3}\) | \(\dfrac{\pi}{2}\) | \(\dfrac{2\pi}{3}\) | \(\dfrac{3\pi}{4}\) | \(\dfrac{5\pi}{6}\) | \(\pi\) |
\(\sec (\theta)\) | \(1\) | \(\dfrac{2\sqrt{3}}{3}\) | \(\sqrt{2}\) | \(2\) | undefined | \(-2\) | \(-\sqrt{2}\) | \(-\dfrac{2\sqrt{3}}{3}\) | \(-1\) |
\(\csc (\theta)\) | undefined | \(2\) | \(\sqrt{2}\) | \(\dfrac{2\sqrt{3}}{3}\) | \(1\) | \(\dfrac{2\sqrt{3}}{3}\) | \(\sqrt{2}\) | \(2\) | undefined |
\(\cot (\theta)\) | undefined | \(\sqrt{3}\) | \(1\) | \(\dfrac{\sqrt{3}}{3}\) | \(0\) | \(\dfrac{-\sqrt{3}}{3}\) | \(-1\) | \(-\sqrt{3}\) | undefined |
19.
Answer.
- \(\displaystyle 0.980\)
- \(\displaystyle 1.020\)
- \(\displaystyle 1.369\)
- \(\displaystyle 1.020\)
- \(\displaystyle 0.284\)
- \(\displaystyle 1.020\)
21.
Answer.
\(\sin (\theta) = \dfrac{4}{5}\text{,}\) \(~\cos (\theta) = \dfrac{3}{5}\text{,}\) \(~\tan (\theta) = \dfrac{4}{3}\text{,}\) \(~\sec (\theta) = \dfrac{5}{3}\text{,}\) \(~\csc (\theta) = \dfrac{5}{4}\text{,}\) \(~\cot (\theta) = \dfrac{3}{4}\)
23.
Answer.
\(\sin (\theta) = \dfrac{4}{\sqrt{41}}\text{,}\) \(~\cos (\theta) = \dfrac{5}{\sqrt{41}}\text{,}\) \(~\tan (\theta) = \dfrac{4}{5}\text{,}\) \(~\sec (\theta) = \dfrac{\sqrt{41}}{5}\text{,}\) \(~\csc (\theta) = \dfrac{\sqrt{41}}{4}\text{,}\) \(~\cot (\theta) = \dfrac{5}{4}\)
25.
Answer.
\(\sin (\theta) = \dfrac{5}{\sqrt{74}}\text{,}\) \(~\cos (\theta) = \dfrac{-7}{\sqrt{74}}\text{,}\) \(~\tan (\theta) = \dfrac{-5}{7}\text{,}\) \(~\sec (\theta) = \dfrac{-\sqrt{74}}{7}\text{,}\) \(~\csc (\theta) = \dfrac{\sqrt{74}}{5}\text{,}\) \(~\cot (\theta) = \dfrac{-7}{5}\)
27.
Answer.
\(\sin (\theta) = \dfrac{-5}{8}\text{,}\) \(~\cos (\theta) = \dfrac{\sqrt{39}}{8}\text{,}\) \(~\tan (\theta) = \dfrac{5}{\sqrt{39}}\text{,}\) \(~\sec (\theta) = \dfrac{-8}{\sqrt{39}}\text{,}\) \(~\csc (\theta) = \dfrac{-8}{5}\text{,}\) \(~\cot (\theta) = \dfrac{\sqrt{39}}{5}\)
29.
Answer.
- \(\displaystyle d=h\csc (\theta)\)
- 155.572 miles
31.
Answer.
- 0.78 sec
- \(\displaystyle l=8t^2\sin (2\theta)\)
33.
Answer.
\(\sin (\theta) = \dfrac{7}{\sqrt{x^2+49}}\text{,}\) \(~\cos (\theta) = \dfrac{x}{\sqrt{x^2+49}}\text{,}\) \(~\tan (\theta) = \dfrac{7}{x}\text{,}\) \(~\sec (\theta) = \dfrac{\sqrt{x^2+49}}{x}\text{,}\) \(~\csc (\theta) = \dfrac{\sqrt{x^2+49}}{7}\text{,}\) \(~\cot (\theta) = \dfrac{x}{7}\)
35.
Answer.
\(\sin (\theta) = S\text{,}\) \(~\cos (\theta) = \sqrt{1-S^2}\text{,}\) \(~\tan (\theta) = \dfrac{S}{\sqrt{1-S^2}}\text{,}\) \(~\sec (\theta) = \dfrac{1}{\sqrt{1-S^2}}\text{,}\) \(~\csc (\theta) = \dfrac{1}{S}\text{,}\) \(~\cot (\theta) = \dfrac{\sqrt{1-S^2}}{S}\)
37.
Answer.
\(\sin (\theta) = \dfrac{-\sqrt{9-a^2}}{3}\text{,}\) \(~\cos (\theta) = \dfrac{a}{3}\text{,}\) \(~\tan (\theta) = \dfrac{-\sqrt{9-a^2}}{a}\text{,}\) \(~\sec (\theta) = \dfrac{3}{a}\text{,}\) \(~\csc (\theta) = \dfrac{-3}{\sqrt{9-a^2}}\text{,}\) \(~\cot (\theta) = \dfrac{-a}{\sqrt{9-a^2}}\)
39.
Answer.
\(AC,~OA,~BD,~OD,~OE,~EF\)
41.
Answer.
\(~\sin (\theta) = \dfrac{-\sqrt{3}}{2}\text{,}\) \(~\cos (\theta) = \dfrac{1}{2}\text{,}\) \(~\tan (\theta) = -\sqrt{3}\text{,}\) \(~\sec (\theta) = 2\text{,}\) \(~\csc (\theta) = \dfrac{-2\sqrt{3}}{3}\text{,}\) \(~\cot (\theta) = \dfrac{-\sqrt{3}}{3}\)
43.
Answer.
\(\sin (\alpha) = \dfrac{1}{3}\text{,}\) \(~\cos (\alpha) = \dfrac{2\sqrt{2}}{3}\text{,}\) \(~\tan (\alpha) = \dfrac{\sqrt{2}}{4}\text{,}\) \(~\sec (\alpha) = \dfrac{3\sqrt{2}}{4}\text{,}\) \(~\csc (\alpha) = 3\text{,}\) \(~\cot (\alpha) = 2\sqrt{2}\)
45.
Answer.
\(\sin (\gamma) = \dfrac{-4}{\sqrt{17}}\text{,}\) \(\cos (\gamma) = \dfrac{-1}{\sqrt{17}}\text{,}\) \(\tan (\gamma) = 4\text{,}\) \(\sec (\gamma) = -\sqrt{17}\text{,}\) \(\csc (\gamma) = \dfrac{-\sqrt{17}}{4}\text{,}\) \(\cot (\gamma) = \dfrac{1}{4}\)
47.
Answer.
\(\dfrac{4\sqrt{3}}{3}+2\sqrt{2}\)
49.
Answer.
\(\dfrac{\sqrt{3}}{3}\)
51.
Answer.
\(\dfrac{4\sqrt{6}}{3}+\dfrac{10}{3}\)
53.
Answer.
\(x\) | \(0\) | \(\dfrac{\pi}{4}\) | \(\dfrac{\pi}{2}\) | \(\dfrac{3\pi}{4}\) | \(\pi\) | \(\dfrac{5\pi}{4}\) | \(\dfrac{3\pi}{2}\) | \(\dfrac{7\pi}{4}\) | \(2\pi\) |
\(\sec (x)\) | \(1\) | \(\sqrt{2}\) | undefined | \(-\sqrt{2}\) | \(-1\) | \(-\sqrt{2}\) | undefined | \(\sqrt{2}\) | \(1\) |
55.
Answer.
57.
Answer.
\(x\) | \(0\) | \(\dfrac{\pi}{4}\) | \(\dfrac{\pi}{2}\) | \(\dfrac{3\pi}{4}\) | \(\pi\) | \(\dfrac{5\pi}{4}\) | \(\dfrac{3\pi}{2}\) | \(\dfrac{7\pi}{4}\) | \(2\pi\) |
\(\cot (x)\) | undefined | \(1\) | \(0\) | \(-1\) | undefined | \(1\) | \(0\) | \(-1\) | undefined |
59.
Answer.
\(\begin{aligned}[t]\dfrac{\csc (x)}{\cot (x)} \amp=\dfrac{\dfrac{1}{\sin (x)}}{\dfrac{\cos (x)}{\sin (x)}}\\ \amp= \dfrac{1}{\sin (x)}\div \dfrac{\cos (x)}{\sin (x)} \\ \amp= \dfrac{1}{\sin (x)}\cdot \dfrac{\sin (x)}{\cos (x)} \\ \amp= \dfrac{1}{\cos (x)} \\ \amp= \sec (x)\end{aligned}\)
61.
Answer.
\(\dfrac{\sec (x) \cot (x)}{\csc (x)}=\dfrac{\dfrac{1}{\cos (x)} \cdot \dfrac{\cos (x)}{\sin (x)}}{\dfrac{1}{\sin (x)}} = \dfrac{\dfrac{1}{\sin (x)}}{\dfrac{1}{\sin (x)}} = 1\)
63.
Answer.
\(\tan (x) \csc (x) = \dfrac{\sin (x)}{\cos (x)} \cdot \dfrac{1}{\sin (x)} = \dfrac{1}{\cos (x)} = \sec (x)\)
65.
Answer.
\(\dfrac{\pi}{6},~ \dfrac{5\pi}{6}\)
67.
Answer.
\(\dfrac{3\pi}{4},~ \dfrac{5\pi}{4}\)
69.
Answer.
\(\dfrac{5\pi}{6},~ \dfrac{11\pi}{6}\)
71.
Answer.
\(\dfrac{-\sqrt{5}}{5}\)
73.
Answer.
\(\dfrac{\sqrt{a^2-4}}{2}\)
75.
Answer.
\(\dfrac{\sqrt{w^2-1}}{-w}\)
77.
Answer.
\(\sec (s) = \dfrac{-5}{4}\text{,}\) \(~\csc (s) = \dfrac{5}{3}\text{,}\) \(~\cot (s) = \dfrac{-4}{3}\)
79.
Answer.
\(\sec (s) = \dfrac{1}{\sqrt{1-w^2}}\text{,}\) \(~\csc (s) = \dfrac{1}{w}\text{,}\) \(~\cot (s) = \dfrac{\sqrt{1-w^2}}{w}\)
81.
Answer.
\(\dfrac{\sin (\theta)}{\cos^2(\theta)}\)
83.
Answer.
\(\sec (t)\)
85.
Answer.
\(\dfrac{1-\sin (\beta)}{\cos (\beta)}\)
87.
Answer.
\(-\cos (x)\)
89.
Answer.
\(\begin{aligned}[t]
\cos^2 (\theta) + \sin^2 (\theta) \amp = 1\\
\dfrac{\cos^2 (\theta)}{\cos^2 (\theta)}+\dfrac{\sin^2 (\theta)}{\cos^2 (\theta)}\amp = \dfrac{1}{\cos^2 (\theta)}\\
1 + \tan^2 (\theta) \amp = \sec^2 (\theta)
\end{aligned}\)
91.
Answer.
- \(\displaystyle \csc (\theta) = -\sqrt{26}\)
- \(\displaystyle \sin (\theta) = \dfrac{-\sqrt{26}}{26},~\cos (\theta) = \dfrac{-5\sqrt{26}}{26},~\tan (\theta) = \dfrac{1}{5},~\sec (\theta) = \dfrac{-\sqrt{26}}{5}\)
93.
Answer.
\(\cos (t) = \pm \sqrt{1-\sin^2 (t)}\text{,}\) \(~\tan (t) = \dfrac{\pm \sin (t)}{\sqrt{1-\sin^2 (t)}}\text{,}\) \(~\sec (t) = \dfrac{\pm 1}{\sqrt{1-\sin^2 (t)}}\text{,}\) \(~\csc (t) = \dfrac{1}{\sin (t)}\text{,}\) \(~ \cot (t) = \dfrac{\pm \sqrt{1-\sin^2 (t)}}{\sin (t)}\)
95.
Answer.
\(\begin{aligned}[t]
\dfrac{a}{\sin (A)} \amp = \dfrac{b}{\sin (B)} = \dfrac{c}{\sin (C)}\\
a \cdot\dfrac{1}{\sin (A)} \amp = b \cdot \dfrac{1}{\sin (B)} = c \cdot \dfrac{1}{\sin (C)}\\
a \csc (A) \amp = b \csc (B) = c \csc (C)
\end{aligned}\)
8.4 Chapter Summary and Review
Review Problems
1.
Answer.
False
3.
Answer.
True
5.
Answer.
False
7.
Answer.
False
9.
Answer.
\(\dfrac{2-\sqrt{21}}{5\sqrt{2}}\)
11.
Answer.
- \(\displaystyle \dfrac{5\sqrt{33}-3}{32}\)
- \(\displaystyle \dfrac{5\sqrt{33}-3}{\sqrt{5}(3\sqrt{3}+\sqrt{11})}\)
13.
Answer.
\(1\)
15.
Answer.
\(\dfrac{\tan (t) + \sqrt{3}}{1-\sqrt{3}\tan (t)}\)
17.
Answer.
- \(\displaystyle \dfrac{4}{5}\)
- \(\displaystyle \dfrac{3}{5}\)
- \(\displaystyle \dfrac{4}{3}\)
- \(\displaystyle \dfrac{24}{25}\)
- \(\displaystyle \dfrac{-7}{25}\)
- \(\displaystyle \dfrac{-24}{7}\)
19.
Answer.
\(\sin (9x)\)
21.
Answer.
\(\tan(2\phi - 2)\)
23.
Answer.
\(\sin (8\theta)\)
25.
Answer.
- \(\displaystyle 1-2\sin^2(\theta) - \sin (\theta) = 1\)
- \(\displaystyle 0,~\pi,~\dfrac{7\pi}{6},~\dfrac{11\pi}{6}\)
27.
Answer.
No
29.
Answer.
- \(\displaystyle \dfrac{-\pi}{3}\)
- \(\displaystyle \dfrac{2\pi}{3}\)
31.
Answer.
- \(\displaystyle \tan^{-1}\left(\dfrac{52.8}{x}\right)\)
- \(\displaystyle 69.25\degree,~ 27.83\degree\)
33.
Answer.
\(\theta = \sin^{-1}\left(\dfrac{v_y + gt}{v_0}\right)\)
35.
Answer.
\(\dfrac{2}{3}\)
37.
Answer.
\(\sqrt{1-4t^2}\)
39.
Answer.
Because \(\abs{\sin (\theta)} \le 1, ~\sin^{-1}(t)\) is undefined for \(\abs{t} \gt 1\text{.}\) If \(x \not= 0\text{,}\) then either \(\abs{x} \gt 1\) or \(\abs{\dfrac{1}{x}} \gt 1\text{.}\) If \(x=0\text{,}\) then \(\dfrac{1}{x}\) is undefined.
41.
Answer.
- \(\displaystyle 2.203\)
- \(\displaystyle -3.236\)
- \(\displaystyle 0.466\)
43.
Answer.
\(\sin (\theta) = \dfrac{13}{\sqrt{313}}\text{,}\) \(~\cos (\theta) = \dfrac{12}{\sqrt{313}}\text{,}\) \(~\tan (\theta) = \dfrac{13}{12}\text{,}\) \(~\sec (\theta) = \dfrac{\sqrt{313}}{12}\text{,}\) \(~\csc (\theta) = \dfrac{\sqrt{313}}{13}\text{,}\) \(~\cot (\theta) = \dfrac{12}{13}\)
45.
Answer.
\(\sin (\theta) = \dfrac{1}{3}\text{,}\) \(~\cos (\theta) = \dfrac{-2\sqrt{2}}{3}\text{,}\) \(~\tan (\theta) = \dfrac{-1}{2\sqrt{2}}\text{,}\) \(~\sec (\theta) = \dfrac{-3}{2\sqrt{2}}\text{,}\) \(~\csc (\theta) = 3\text{,}\) \(~\cot (\theta) = -2\sqrt{2}\)
47.
Answer.
\(\sin (\theta) = \dfrac{-9}{\sqrt{106}}\text{,}\) \(~\cos (\theta) = \dfrac{-5}{\sqrt{106}}\text{,}\) \(~\tan (\theta) = \dfrac{9}{5}\text{,}\) \(~\sec (\theta) = \dfrac{-\sqrt{106}}{5}\text{,}\) \(~\csc (\theta) = \dfrac{-\sqrt{106}}{9}\text{,}\) \(~\cot (\theta) = \dfrac{5}{9}\)
49.
Answer.
\(\sin (\alpha) = \dfrac{-\sqrt{11}}{6}\text{,}\) \(~\cos (\alpha) = \dfrac{-5}{6}\text{,}\) \(~\tan (\alpha) = \dfrac{\sqrt{11}}{5}\text{,}\) \(~\sec (\alpha) = \dfrac{-6}{5},\)\(~\csc (\alpha) = \dfrac{-6}{\sqrt{11}}\text{,}\) \(~\cot (\alpha) = \dfrac{5}{\sqrt{11}}\)
51.
Answer.
\(\sin (\theta )= \dfrac{s}{4},\) \(~\cos (\theta) = \dfrac{\sqrt{16-s^2}}{4},\) \(~\tan (\theta) = \dfrac{s}{\sqrt{16-s^2}},\) \(~\sec (\theta) = \dfrac{4}{\sqrt{16-s^2}},\) \(~\csc (\theta) = \dfrac{4}{s},\) \(~\cot (\theta) = \dfrac{\sqrt{16-s^2}}{s}\)
53.
Answer.
\(\sin (\theta) = \dfrac{w}{\sqrt{w^2+144}},\) \(~\cos (\theta) = \dfrac{-12}{\sqrt{w^2+144}},\) \(~\tan (\theta) = \dfrac{-w}{12},\) \(~\sec (\theta) = \dfrac{-\sqrt{w^2+144}}{12},\) \(~\csc (\theta) = \dfrac{\sqrt{w^2+144}}{w},\) \(~\cot (\theta) = \dfrac{-12}{w}\)
55.
Answer.
\(\sin (\alpha) = \dfrac{k}{2},\) \(~\cos (\alpha) = \dfrac{-\sqrt{4-k^2}}{2},\) \(~\tan (\alpha) = \dfrac{-k}{\sqrt{4-k^2}},\) \(~\sec (\alpha) = \dfrac{-2}{\sqrt{4-k^2}},\) \(~\csc (\alpha) = \dfrac{2}{k},\) \(~\cot (\alpha) = \dfrac{-\sqrt{4-k^2}}{k}\)
57.
Answer.
\(\sin (\theta) =0.3\text{,}\) \(\cos (\theta) = -0.4\text{,}\) \(\tan (\theta) = -0.75\text{,}\) \(\sec (\theta) = -2.5\text{,}\) \(\csc (\theta) \approx 3.33\text{,}\) \(\cot \theta (\approx) -1.33\)
59.
Answer.
\(-8\)
61.
Answer.
\(\sqrt{2}\)
63.
Answer.
\(\theta \approx 2.8,~\theta \approx 0.30\)
65.
Answer.
\(y = \csc (x)\) or \(y = \cot (x)\)
67.
Answer.
\(y = \sec (x)\)
69.
Answer.
\(y = \sec (x)\) or \(y = \csc (x)\)
71.
Answer.
\(f(x) = \sin (x) - 1\)
73.
Answer.
\(G(x) = \tan (x) -1\)
75.
Answer.
\(\cos^2 (x)\)
77.
Answer.
\(\cos^2 (B)\)
79.
Answer.
\(\csc (\theta)\)
81.
Answer.
\(\sqrt{3} \tan (\theta) \sin (\theta)\)
83.
Answer.
- \(\displaystyle AC = \tan (\alpha),~DC = \tan (\beta),~AD = \tan (\alpha) - \tan (\beta)\)
- They are right triangles that share \(\angle B\text{.}\)
- \(\angle A = \angle F,~ \angle B\) is the complement of \(\angle A,\) and \(\angle FDC\) is the complement of \(\angle F\text{.}\)
- \(\dfrac{CF}{CD} = \tan (\alpha),\) so \(CF = \tan (\alpha) \tan (\beta)\)
- They are right triangles with \(\angle A = \angle F\text{.}\)
- \(\angle EBD = \alpha - \beta,\) so \(\tan (\alpha - \beta) = \dfrac{\text{opp}}{\text{adj}} = \dfrac{DE}{BE};~~\dfrac{DE}{BE}\) and \(\dfrac{AD}{BF}\) are ratios of corresponding sides of similar triangles; \(AD = \tan (\alpha) - \tan (\beta)\) by part (a), \(BF = BC + CF = 1 + \tan (\alpha) \tan (\beta)\) by part (d).
85.
Answer.
\(d=25\csc (112\degree),~\alpha = 45\degree,~a \approx 19.07,~b \approx 10.54\)
9 Vectors
9.1 Geometric Form
Homework 9-1
1.
Answer.
3.
Answer.
5.
Answer.
7.
Answer.
\(\bf{A}\) and \(\bf{E}\)
9.
Answer.
\(\bf{H}\) and \(\bf{K}\)
11.
Answer.
13.
Answer.
15.
Answer.
17.
Answer.
19.
Answer.
\(\|{\bf{A}}\| = \sqrt{13},~ \theta = -33.7\degree\)
21.
Answer.
\(\|{\bf{C}}\| = 1,~ \theta = 90\degree\)
23.
Answer.
\(\|{\bf{E}}\| = 5,~ \theta = 90\degree\)
25.
Answer.
\(\|{\bf{G}}\| = 4,~ \theta = 180\degree\)
27.
Answer.
\(\|{\bf{v}}\| = 13,~ \theta = -67.38\degree\)
29.
Answer.
\(\|{\bf{v}}\| = \sqrt{85} \approx 9.22,~ \theta = 229.4\degree\)
31.
Answer.
\(\|{\bf{v} + \bf{w}}\| = 32.9,~ \theta = 109.3\degree\)
33.
Answer.
\(\|{\bf{v} + \bf{w}}\| = 11.4,~ \theta = 162.4\degree\)
35.
Answer.
4.47 mi, \(23.4\degree\) east of north
37.
Answer.
129.4 mph, \(85.4\degree\) west of north
39.
Answer.
- \(\displaystyle v_x = 10,~ v_y = 10\sqrt{3},~ w_x = 5\sqrt{2},~ w_y = -5\sqrt{2}\)
- 19.9 mph, \(59\degree\) east of north
41.
Answer.
- \(\displaystyle v_x \approx -1.23,~ v_y \approx 3.38,~ w_x \approx -0.32,~ w_y \approx -2.23\)
- 1.9 km, \(54.5\degree\) west of north
43.
Answer.
45.
Answer.
47.
Answer.
49.
Answer.
51.
Answer.
\(u_x = 2\text{,}\) \(~ u_y = 1\text{,}\) \(~ v_x = 1\text{,}\)\(~ v_y = -3\text{,}\) \(~ A_x = 1\text{,}\) \(~ A_y = 4\text{;}\) \(~ A_x = u_x - v_x\text{,}\) \(~ A_y = u_y - v_y\)
9.2 Coordinate Form
Homework 9-2
1.
Answer.
\({\bf{u}} = 3{\bf{i}}+2{\bf{j}}\)
- \(\displaystyle \sqrt{13}\)
- \(\displaystyle 6{\bf{i}}+4{\bf{j}}\)
- \(\displaystyle 2\sqrt{13}\)
3.
Answer.
\({\bf{w}} = 6{\bf{i}}-3{\bf{j}}\)
- \(\displaystyle 3\sqrt{5}\)
- \(\displaystyle -6{\bf{i}}+3{\bf{j}}\)
- \(\displaystyle 3\sqrt{5}\)
5.
Answer.
- \({\bf{u}}+{\bf{v}} = -2{\bf{i}}+5{\bf{j}}\) and \(\|{\bf{u}}+{\bf{v}}\| = \sqrt{29}\)
- \(\displaystyle \|{\bf{u}}\|+\|{\bf{v}}\| \ge \|{\bf{u}}+{\bf{v}}\|\)
7.
Answer.
- \(-5{\bf{i}}+8{\bf{j}}\)
- \(\displaystyle \|{\bf{v}}\| = \sqrt{89},~~\theta = 122\degree\)
9.
Answer.
- \(-2{\bf{i}}-{\bf{j}}\)
- \(\displaystyle \|{\bf{v}}\| = \sqrt{5},~~\theta = 206.6\degree\)
11.
Answer.
- \(\displaystyle 18{\bf{i}}+12{\bf{j}}\)
- \(\displaystyle \|{\bf{v}}\| = 6\sqrt{13},~~\theta = 33.7\degree\)
13.
Answer.
\(\|{\bf{v}}\| = 6\sqrt{2},~~\theta = 135\degree\)
15.
Answer.
\(\|{\bf{w}}\| = 14,~~\theta = -30\degree\)
17.
Answer.
\(\|{\bf{q}}\| = 4\sqrt{745},~~\theta = 61.56\degree\)
19.
Answer.
\({\bf{v}} = 3\sqrt{2}{\bf{i}}-3\sqrt{2}{\bf{j}}\)
21.
Answer.
\({\bf{v}} \approx 6.629{\bf{i}}+4.995{\bf{j}}\)
23.
Answer.
\({\bf{i}}-2{\bf{j}}\)
25.
Answer.
\(-4{\bf{i}}+4{\bf{j}}\)
27.
Answer.
\(12{\bf{i}}+3{\bf{j}}\)
29.
Answer.
\(2.8{\bf{i}}+1.9{\bf{j}}\)
31.
Answer.
\(-3{\bf{i}}+7{\bf{j}}\)
33.
Answer.
\(-8{\bf{i}}-20{\bf{j}}\)
35.
Answer.
\(14{\bf{i}}-9{\bf{j}}\)
37.
Answer.
\(-9{\bf{i}}+23{\bf{j}}\)
39.
Answer.
\(\dfrac{-12}{13}{\bf{i}}+\dfrac{5}{13}{\bf{j}}\)
41.
Answer.
\(\dfrac{1}{\sqrt{2}}{\bf{i}}-\dfrac{1}{\sqrt{2}}{\bf{j}}\)
43.
Answer.
\(24{\bf{i}}+45{\bf{j}}\)
45.
Answer.
\(\dfrac{-12}{\sqrt{10}}{\bf{i}}+\dfrac{4}{\sqrt{10}}{\bf{j}}\)
47.
Answer.
- \(\displaystyle {\bf{u}}=2.393{\bf{i}}+1.016{\bf{j}},~~{\bf{v}}=-4.242{\bf{i}}-3.956{\bf{j}}\)
- \(\displaystyle -1.849{\bf{i}}-2.940{\bf{j}}\)
49.
Answer.
- \(\displaystyle {\bf{u}}=-11.97{\bf{i}}+32.889{\bf{j}},~~{\bf{v}}=-57.955{\bf{i}}+15.529{\bf{j}}\)
- \(\displaystyle 45.98{\bf{i}}+17.36{\bf{j}}\)
51.
Answer.
- 1700 m, \(28.1\degree\) east of south
53.
Answer.
- 21.98 km, \(2.27\degree\) north of west
55.
Answer.
- 83 mi, \(62\degree\) east of north
57.
Answer.
- \(\displaystyle -4{\bf{i}}-5{\bf{j}}\)
- \(\displaystyle 4{\bf{i}}+5{\bf{j}}\)
59.
Answer.
- \(\displaystyle {\bf{i}}-3{\bf{j}}\)
- \(\displaystyle -{\bf{i}}+3{\bf{j}}\)
61.
Answer.
- \(\displaystyle \|{\bf{v}}\| = 10,~ 2\|{\bf{v}}\| = 20 = 2 \cdot 10\)
- \(\displaystyle \|k{\bf{v}}\| = \sqrt{(ka)^2 +(kb)^2} = k\sqrt{a^2 + b^2}\)
9.3 The Dot Product
Homework 9-3
1.
Answer.
\(\dfrac{33}{\sqrt{13}}\)
3.
Answer.
\(\dfrac{-1}{\sqrt{2}}\)
5.
Answer.
\(-2\sqrt{5}\)
7.
Answer.
- \(\displaystyle {\bf{w}} = \left(\dfrac{56}{13}{\bf{i}}+\dfrac{84}{13}{\bf{j}}\right) + \left(\dfrac{48}{13}{\bf{i}}-\dfrac{32}{13}{\bf{j}}\right)\)
9.
Answer.
- \(\displaystyle {\bf{w}} = (4{\bf{i}}-4{\bf{j}}) + (2{\bf{i}}+2{\bf{j}})\)
11.
Answer.
\(22\)
13.
Answer.
\(0\)
15.
Answer.
\(12\)
17.
Answer.
\(-318.2\)
19.
Answer.
not orthogonal
21.
Answer.
orthogonal
23.
Answer.
\(4.4\degree\)
25.
Answer.
\(97.1\degree\)
27.
Answer.
\(8\)
29.
Answer.
\(-10\)
31.
Answer.
\(-21\)
33.
Answer.
\(42{\bf{i}}-28{\bf{j}}\)
35.
Answer.
\(4\)
37.
Answer.
38.57 lbs
39.
Answer.
1289 lbs
41.
Answer.
- \(\displaystyle \dfrac{1}{\sqrt{2}}{\bf{i}}+\dfrac{1}{\sqrt{2}}{\bf{j}}~~\text{and}~~\dfrac{-1}{\sqrt{2}}{\bf{i}}+\dfrac{1}{\sqrt{2}}{\bf{j}}\)
- \(\displaystyle {\bf{u}} \cdot {\bf{v}} = 0\)
- \(\dfrac{11}{\sqrt{2}}\) and \(\dfrac{5}{\sqrt{2}}\)
43.
Answer.
\({\bf{v}} \cdot {\bf{v}} = c^2 + d^2\)
45.
Answer.
\(k{\bf{u}} \cdot {\bf{v}} = kac+kbd = k(ac+bd) = (akc + bkd)\)
47.
Answer.
\(\begin{aligned}[t] ({\bf{u}}-{\bf{v}}) \cdot ({\bf{u}}+{\bf{v}}) \amp= (a-c)(a+c)+(b-d)(b+d)\\ \amp= (a^2+b^2)-(c^2+d^2)\end{aligned}\)
49.
Answer.
\(\dfrac{a \cdot 1 + b \cdot 0}{1} = a\) and \(\dfrac{a \cdot 0 + b \cdot 1}{1} = b\)
51.
Answer.
- Both \({\bf{i}} \cdot {\bf{i}}=1\) and \({\bf{j}} \cdot {\bf{j}}=1\) because \(1 \cdot 1 \cos 0 = 1\text{;}\) \({\bf{i}} \cdot {\bf{j}} = 1 \cdot 1 \cos 90\degree =0\)
- \(\displaystyle (a{\bf{i}}+b{\bf{j}}) \cdot (c{\bf{i}}+d{\bf{j}}) = ac(1) + ad(0) + bc(0) + bd(1) = ac+bd\)
53.
Answer.
- \(\displaystyle \|{\bf{u}}-{\bf{v}}\|^2 = {\bf{u}} \cdot {\bf{u}} - 2{\bf{u}} \cdot {\bf{v}} +{\bf{v}} \cdot {\bf{v}}= \|{\bf{u}}\|^2+\|{\bf{v}}\|^2 - 2\|{\bf{u}}\|\|{\bf{v}}\|\cos \theta\)
- Let \(a = \|{\bf{u}}\|,~ b = \|{\bf{v}}\|,~c = \|{\bf{u}}-{\bf{v}}\|\text{,}\) and \(C = \theta\)
9.4 Chapter Summary and Review
Review Problems
1.
Answer.
\(v_N=8.45\) mph, \(v_E=-18.13\) mph
3.
Answer.
\(v_N=-1127.63\) lbs, \(v_E=-410.42\) lbs
5.
Answer.
\(\|{\bf{A}}\|=10.9,~\theta = 236.3\degree\)
7.
Answer.
\({\bf{i}}-\sqrt{3}{\bf{j}}\)
9.
Answer.
- \(15{\bf{i}}+3{\bf{j}}\)
- \(\displaystyle \|{\bf{v}}\|=15.3,~\theta = 11.3\degree\)
11.
Answer.
- \(2{\bf{i}}-6{\bf{j}}\)
- \(\displaystyle \|{\bf{v}}\|=6.3~\text{mi},~\theta = 288.4\degree\)
13.
Answer.
- \(\displaystyle 7.64~\text{km},~\theta = 30.31\degree\)
15.
Answer.
- \(\displaystyle 8.46~\text{mi},~\theta = 155.6\degree\)
17.
Answer.
- \({\bf{F_1}}=-200{\bf{i}},~{\bf{F_2}}=-60\sqrt{2}{\bf{i}}-60\sqrt{2}{\bf{j}},~{\bf{F_3}}=50\sqrt{3}{\bf{i}}+50{\bf{j}},\) \({\bf{F_4}}=-125{\bf{i}}+125\sqrt{3}{\bf{j}}\)
- \(\displaystyle -73.25{\bf{i}}+181.65{\bf{j}}\)
19.
Answer.
\(13{\bf{i}}+5{\bf{j}}\)
21.
Answer.
\(-7{\bf{i}}-14{\bf{j}}\)
23.
Answer.
\(\dfrac{2}{\sqrt{13}}{\bf{i}}+\dfrac{3}{\sqrt{13}}{\bf{j}}\)
25.
Answer.
\(\dfrac{-6}{\sqrt{29}}{\bf{i}}-\dfrac{15}{\sqrt{29}}{\bf{j}}\)
27.
Answer.
\(-3.45\)
29.
Answer.
\(-8.08\)
31.
Answer.
\(106.26\degree\)
10 Polar Coordinates and Complex Numbers
10.1 Polar Coordinates
Homework 10-1
1.
Answer.
3.
Answer.
5.
Answer.
7.
Answer.
9.
Answer.
\(\left(5, \dfrac{3\pi}{4}\right)\)
11.
Answer.
\((1, \pi)\)
13.
Answer.
\(\left(3, \dfrac{4\pi}{3}\right)\)
15.
Answer.
\(\left(2, \dfrac{\pi}{12}\right)\)
17.
Answer.
\((-3, 3\sqrt{3})\)
19.
Answer.
\(\left(\dfrac{3}{\sqrt{2}}, \dfrac{-3}{\sqrt{2}}\right)\)
21.
Answer.
\((-2.15, -1.06)\)
23.
Answer.
\((-0.14, -1.99)\)
25.
Answer.
\(\left(7\sqrt{2}, \dfrac{\pi}{4}\right)\)
27.
Answer.
\(\left(2\sqrt{2}, \dfrac{11\pi}{6}\right)\)
29.
Answer.
\(\left(\sqrt{13}, \pi+\tan^{-1}\dfrac{2}{3}\right)\)
31.
Answer.
\((2, \pi)\)
33.
Answer.
- \(\displaystyle \left(-2, \dfrac{11\pi}{6}\right)\)
- \(\displaystyle \left(2, \dfrac{-7\pi}{6}\right)\)
35.
Answer.
- \(\displaystyle (-3,0)\)
- \(\displaystyle (3, -\pi)\)
37.
Answer.
- \(\displaystyle (-2.3, 2.06)\)
- \(\displaystyle (2.3, -1.08)\)
39.
Answer.
41.
Answer.
43.
Answer.
45.
Answer.
\(r \ge 0,~ \dfrac{\pi}{6} \le \theta \le \dfrac{\pi}{3}\)
47.
Answer.
\(r \ge 1,~ \dfrac{\pi}{2} \le \theta \le \pi\)
49.
Answer.
\(-1 \le r \le 1,~ \dfrac{3\pi}{4} \le \theta \le \pi\)
51.
Answer.
\(x^2+y^2=2\)
53.
Answer.
\(x^2+y^2=4x\)
55.
Answer.
\(y=1\)
57.
Answer.
\(y=2x\)
59.
Answer.
\(x^2+y^2=3x\)
61.
Answer.
\(x^2=4-4y\)
63.
Answer.
\(2x+y=1\)
65.
Answer.
\(r=2\sec (\theta)\)
67.
Answer.
\(2r^2=\sec (\theta) \csc (\theta)\)
69.
Answer.
\(r=4\cot (\theta) \csc (\theta)\)
71.
Answer.
\(r=4\)
73.
Answer.
\begin{align*}
d \amp =\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\\
\amp = \sqrt{(r_2\cos(\theta_2)-r_1\cos(\theta_1))^2 +(r_2\sin(\theta_2)-r_1\sin(\theta_1))^2}\\
\amp = \sqrt{r_2^2\cos^2(\theta_2) - 2r_2r_1\cos(\theta_2)\cos(\theta_1)+r_1^2\cos^2(\theta_1)+r_2^2\sin^2(\theta_2) - 2r_2r_1\sin(\theta_2)\sin(\theta_1)+r_1^2\sin^2(\theta_1)}\\
\amp = \sqrt{r_2^2+r_1^2 - 2r_2r_1(\cos(\theta_2)\cos(\theta_1)-\sin(\theta_2)\sin(\theta_1))}\\
\amp = \sqrt{r_1^2 + r_2^2 - 2r_1r_2\cos (\theta_2 - \theta_1)}
\end{align*}
10.2 Polar Graphs
Homework 10-2
1.
Answer.
-
\(k\) is the radius
- \(\displaystyle x^2+y^2=1,~ x^2+y^2=4,~ x^2+y^2=9\)
3.
Answer.
-
\(\tan k\) is the slope
- \(\displaystyle y=\dfrac{x}{\sqrt{3}},~ y=\sqrt{3}x,~ y=-\sqrt{3}x,~ y=\dfrac{x}{\sqrt{3}}\)
5.
Answer.
\(\theta\) | \(0\) | \(\dfrac{\pi}{4}\) | \(\dfrac{\pi}{2}\) | \(\dfrac{3\pi}{4}\) | \(\pi\) | \(\dfrac{5\pi}{4}\) | \(\dfrac{3\pi}{2}\) | \(\dfrac{7\pi}{4}\) |
\(r=2\) | \(2\) | \(2\) | \(2\) | \(2\) | \(2\) | \(2\) | \(2\) | \(2\) |
\(\theta\) | \(0\) | \(\dfrac{\pi}{4}\) | \(\dfrac{\pi}{2}\) | \(\dfrac{3\pi}{4}\) | \(\pi\) | \(\dfrac{5\pi}{4}\) | \(\dfrac{3\pi}{2}\) | \(\dfrac{7\pi}{4}\) |
\(r=-2\) | \(-2\) | \(-2\) | \(-2\) | \(-2\) | \(-2\) | \(-2\) | \(-2\) | \(-2\) |
The graph of \(r=2\) begins at the right-most point (and proceeds counter-clockwise); the graph of \(r=-2\) begins at the left-most point.
7.
Answer.
-
\(\theta\) \(\pi\) \(\dfrac{5\pi}{4}\) \(\dfrac{3\pi}{2}\) \(\dfrac{7\pi}{4}\) \(2\pi\) \(r\) \(-4\) \(-2\sqrt{2}\) \(0\) \(2\sqrt{2}\) \(4\) The graph is traced again. - center: \((2,0)\text{,}\) radius: \(2\)
- \(\displaystyle (x-2)^2+y^2=4\)
9.
Answer.
- For \(a \gt 0\text{,}\) \(a\) is the radius of a circle centerd on the positive \(y\)-axis; for \(a \lt 0\text{,}\) \(\abs{a}\) is the radius of a circle centerd on the negative \(y\)-axis.
11.
Answer.
-
\(\theta\) \(0\) \(\dfrac{\pi}{2}\) \(\pi\) \(\dfrac{3\pi}{2}\) \(2\pi\) \(r\) \(1\) \(2\) \(1\) \(0\) \(1\) -
\(\theta\) \(0\) \(\dfrac{\pi}{2}\) \(\pi\) \(\dfrac{3\pi}{2}\) \(2\pi\) \(r\) \(-1\) \(0\) \(-1\) \(-2\) \(-1\) -
\(\theta\) \(0\) \(\dfrac{\pi}{2}\) \(\pi\) \(\dfrac{3\pi}{2}\) \(2\pi\) \(r\) \(1\) \(0\) \(1\) \(2\) \(1\) -
\(\theta\) \(0\) \(\dfrac{\pi}{2}\) \(\pi\) \(\dfrac{3\pi}{2}\) \(2\pi\) \(r\) \(-1\) \(-2\) \(-1\) \(0\) \(-1\)
13.
Answer.
-
\(\theta\) \(0\) \(\dfrac{\pi}{2}\) \(\pi\) \(\dfrac{3\pi}{2}\) \(2\pi\) \(r\) \(3\) \(2\) \(1\) \(2\) \(3\) -
\(\theta\) \(0\) \(\dfrac{\pi}{2}\) \(\pi\) \(\dfrac{3\pi}{2}\) \(2\pi\) \(r\) \(1\) \(2\) \(3\) \(2\) \(1\) -
\(\theta\) \(0\) \(\dfrac{\pi}{2}\) \(\pi\) \(\dfrac{3\pi}{2}\) \(2\pi\) \(r\) \(3\) \(1\) \(-1\) \(1\) \(3\) -
\(\theta\) \(0\) \(\dfrac{\pi}{2}\) \(\pi\) \(\dfrac{3\pi}{2}\) \(2\pi\) \(r\) \(-1\) \(1\) \(3\) \(1\) \(-1\)
15.
Answer.
-
There are \(n\) petals if \(n\) is odd, and \(2n\) petals if \(n\) is even.
- \(n=2:~ \dfrac{\pi}{4},\) \(~ \dfrac{3\pi}{4},~\)\(\dfrac{5\pi}{4},~\)\(\dfrac{7\pi}{4};~\) \(n=3:~\dfrac{\pi}{6},~\)\(\dfrac{5\pi}{6},~\)\(\dfrac{3\pi}{2};\) \(n=4:~ \dfrac{\pi}{8},~\)\(\dfrac{3\pi}{8},~\)\(\dfrac{5\pi}{8},~\)\(\dfrac{7\pi}{8},~\)\(\dfrac{9\pi}{8},~\)\(\dfrac{11\pi}{8},~\)\(\dfrac{13\pi}{8},~\)\(\dfrac{15\pi}{8};\) \(n=5:~~\dfrac{\pi}{10},~\)\(\dfrac{\pi}{2},~\)\(\dfrac{9\pi}{10},~\)\(\dfrac{13\pi}{10},~\)\(\dfrac{17\pi}{10}\)
-
\(a\) is the length of the petal.
17.
Answer.
- \(\displaystyle r=\pm 3\sqrt{\cos 2\theta}\)
- \(a\) is the length of the loop.
19.
Answer.
21.
Answer.
-
\(\theta\) \(0\) \(\dfrac{\pi}{12}\) \(\dfrac{\pi}{6}\) \(\dfrac{\pi}{4}\) \(\dfrac{\pi}{3}\) \(\dfrac{5\pi}{12}\) \(\dfrac{\pi}{2}\) \(\dfrac{7\pi}{12}\) \(\dfrac{2\pi}{3}\) \(3\theta\) \(0\) \(\dfrac{\pi}{4}\) \(\dfrac{\pi}{2}\) \(\dfrac{3\pi}{4}\) \(\pi\) \(\dfrac{5\pi}{4}\) \(\dfrac{3\pi}{2}\) \(\dfrac{7\pi}{4}\) \(2\pi\) \(r\) \(0\) \(\dfrac{\sqrt{2}}{2}\) \(1\) \(\dfrac{\sqrt{2}}{2}\) \(0\) \(\dfrac{-\sqrt{2}}{2}\) \(-1\) \(\dfrac{-\sqrt{2}}{2}\) \(0\) -
\(\theta\) \(0\) \(\dfrac{\pi}{12}\) \(\dfrac{\pi}{6}\) \(\dfrac{\pi}{4}\) \(\dfrac{\pi}{3}\) \(\dfrac{5\pi}{12}\) \(\dfrac{\pi}{2}\) \(\dfrac{7\pi}{12}\) \(\dfrac{2\pi}{3}\) \(3\theta\) \(0\) \(\dfrac{\pi}{4}\) \(\dfrac{\pi}{2}\) \(\dfrac{3\pi}{4}\) \(\pi\) \(\dfrac{5\pi}{4}\) \(\dfrac{3\pi}{2}\) \(\dfrac{7\pi}{4}\) \(2\pi\) \(r\) \(0\) \(\dfrac{\sqrt{2}}{2}\) \(1\) \(\dfrac{\sqrt{2}}{2}\) \(0\) \(\dfrac{-\sqrt{2}}{2}\) \(-1\) \(\dfrac{-\sqrt{2}}{2}\) \(0\)
23.
Answer.
-
\(\theta\) \(0\) \(\dfrac{\pi}{4}\) \(\dfrac{\pi}{2}\) \(\dfrac{3\pi}{4}\) \(\pi\) \(\dfrac{5\pi}{4}\) \(\dfrac{3\pi}{2}\) \(\dfrac{7\pi}{4}\) \(2\pi\) \(y\) \(4\) \(2+\sqrt{2}\) \(2\) \(2-\sqrt{2}\) \(0\) \(2-\sqrt{2}\) \(2\) \(2+\sqrt{2}\) \(4\) -
\(\theta\) \(0\) \(\dfrac{\pi}{4}\) \(\dfrac{\pi}{2}\) \(\dfrac{3\pi}{4}\) \(\pi\) \(\dfrac{5\pi}{4}\) \(\dfrac{3\pi}{2}\) \(\dfrac{7\pi}{4}\) \(2\pi\) \(y\) \(4\) \(2+\sqrt{2}\) \(2\) \(2-\sqrt{2}\) \(0\) \(2-\sqrt{2}\) \(2\) \(2+\sqrt{2}\) \(4\)
25.
Answer.
circle
27.
Answer.
line
29.
Answer.
circle
31.
Answer.
cardioid
33.
Answer.
limaçon
35.
Answer.
rose
37.
Answer.
rose
39.
Answer.
limaçon
41.
Answer.
lemniscate
43.
Answer.
circle
45.
Answer.
arcs of a circle
47.
Answer.
semicircle
49.
Answer.
rose
51.
Answer.
cardioid
53.
Answer.
parabola
55.
Answer.
ellipse
57.
Answer.
hyperbola
59.
Answer.
\(r=2+2\cos (\theta)\)
61.
Answer.
\(r=3\sin (5\theta)\)
63.
Answer.
\(r=5\sin (\theta)\)
65.
Answer.
\(r=1+2\cos (\theta)\)
67.
Answer.
\((0,0)\text{,}\)\(~ \left(\dfrac{1}{2},\dfrac{\pi}{3}\right)\text{,}\)\(~ \left(\dfrac{1}{2},\dfrac{5\pi}{3}\right) \)
69.
Answer.
\((0,0)\text{,}\) \(~ \left(\dfrac{3}{\sqrt{2}}, \dfrac{\pi}{4}\right)\text{,}\) \(~ \left(\dfrac{-3}{\sqrt{2}}, \dfrac{5\pi}{4}\right)\)
71.
Answer.
\(\left(1, \dfrac{\pi}{2}\right)\text{,}\) \(~\left(1, \dfrac{3\pi}{2}\right)\)
73.
Answer.
\(\left(\dfrac{4+\sqrt{2}}{2},\dfrac{3\pi}{4}\right)\text{,}\) \(~\left(\dfrac{4-\sqrt{2}}{2},\dfrac{7\pi}{4}\right)\)
75.
Answer.
77.
Answer.
79.
Answer.
81.
Answer.
83.
Answer.
The curve has \(n\) large loops and \(n\) small loops.
10.3 Complex Numbers
Homework 10-3
1.
Answer.
- \(\displaystyle 5i-4\)
- \(\displaystyle -4+i\)
- \(\displaystyle \dfrac{-5}{6}-\dfrac{\sqrt{2}}{6}i\)
3.
Answer.
\(-3\pm 2i\)
5.
Answer.
\(\dfrac{1}{6} \pm \dfrac{\sqrt{11}}{6}i\)
7.
Answer.
\(13+4i\)
9.
Answer.
\(-0.8+3.8i\)
11.
Answer.
\(20-10i\)
13.
Answer.
\(-14+34i\)
15.
Answer.
\(46+14i\sqrt{3}\)
17.
Answer.
\(52\)
19.
Answer.
\(-2-2i\)
21.
Answer.
\(-1+4i\)
23.
Answer.
\(\dfrac{35}{3}+\dfrac{20}{3}i\)
25.
Answer.
\(\dfrac{-25}{29}+\dfrac{10}{29}i\)
27.
Answer.
\(\dfrac{3}{4}-\dfrac{\sqrt{3}}{4}i\)
29.
Answer.
\(\dfrac{-2}{3}+\dfrac{\sqrt{5}}{3}i\)
31.
Answer.
\(i\)
33.
Answer.
- \(\displaystyle -1\)
- \(\displaystyle 1\)
- \(\displaystyle -i\)
- \(\displaystyle -1\)
35.
Answer.
- \(\displaystyle 0\)
- \(\displaystyle 0\)
37.
Answer.
- \(\displaystyle 0\)
- \(\displaystyle 0\)
39.
Answer.
- \(\displaystyle 0\)
- \(\displaystyle 0\)
41.
Answer.
\(4z^2+49\)
43.
Answer.
\(x^2+6x+10\)
45.
Answer.
\(v^2-8v+17\)
47.
Answer.
49.
Answer.
51.
Answer.
53.
Answer.
55.
Answer.
57.
Answer.
59.
Answer.
\((a+bi)(c+di) = ac+adi+bci+bdi^2=(ac-bd)+(ad+bc)i\)
61.
Answer.
\begin{align*}
z_1+z_2 \amp =(a+bi)+(c+di)=(a+c)+(b+d)i\\
\amp =(c+a)+(d+b)i=(c+di)+(a+bi)=z_2+z_1
\end{align*}
\begin{align*}
z_1z_2 \amp =(a+bi)(c+di) = (ac-bd)+(ad+bc)i\\
\amp =(ca-db)+(da+cb)i=z_2z_1
\end{align*}
63.
Answer.
- \(z+\bar{z}=(a+bi)+(a-bi)=2a;~~~\) \(z-\bar{z}=(a+bi)-(a-bi)=-2bi\)
- \(\displaystyle z\bar{z}=(a+bi)(a-bi)=a^2+b^2=\abs{z}^2\)
65.
Answer.
No. Let \(t=i\) and \(z=-i\text{.}\) Then \(w=t+z=i-i=0,\) so \(\abs{w}=0,\) but \(\abs{t}+\abs{z}=\abs{i}+\abs{-i}=1+1=2.\)
67.
Answer.
- \(\displaystyle 2-\sqrt{5}\)
- \(\displaystyle x^2-4x-1=0\)
69.
Answer.
- \(\displaystyle 4+3i\)
- \(\displaystyle x^2-8x+25=0\)
71.
Answer.
\(x^4-6x^3+23x^2-50x+50=0\)
73.
Answer.
\(x^4-7x^3+20x^2-19x+13=0\)
10.4 Polar Form for Complex Numbers
Homework 10-4
1.
Answer.
\(1\text{,}\) \(~i\text{,}\) \(~-1\text{,}\)\(~-i\text{,}\) \(~1\)
3.
Answer.
\(1+2i\text{,}\) \(-2+i\)
5.
Answer.
\(-3+3i\sqrt{3}\)
7.
Answer.
\(-1+i\)
9.
Answer.
\(2.34-4.21i\)
11.
Answer.
\(-5.07+10.88i\)
13.
Answer.
\(3\left(\cos \left(\dfrac{\pi}{2}\right) + i\sin \left(\dfrac{\pi}{2}\right)\right)\text{,}\) \(3\left(\cos \left(\dfrac{3\pi}{2}\right) + i\sin \left(\dfrac{3\pi}{2}\right)\right)\)
15.
Answer.
\(2\sqrt{3}\left(\cos \left(\dfrac{7\pi}{6}\right) + i\sin \left(\dfrac{7\pi}{6}\right)\right)\text{,}\) \(2\sqrt{3}\left(\cos \left(\dfrac{11\pi}{6}\right) + i\sin \left(\dfrac{11\pi}{6}\right)\right)\)
17.
Answer.
\(4.47(\cos (2.68) + i\sin (2.68)),~\) \(4.47(\cos (5.82) + i\sin (5.82))\)
19.
Answer.
\(8.60(\cos (5.78) + i\sin (5.78)),~\) \(8.60(\cos (0.51) + i\sin (0.51))\)
21.
Answer.
\(5(\cos (0.93) + i\sin (0.93)),~\) \(5(\cos (5.36) + i\sin (5.36)),~\) \(5(\cos (2.21) + i\sin (2.21)),~\) \(5(\cos (4.07) + i\sin (4.07))\)
23.
Answer.
If \(z=r(\cos (\theta)+ i\sin (\theta)),\) then \(\bar{z}=r(\cos (2\pi -\theta) + i\sin (2\pi -\theta)\)
25.
Answer.
\(z_1z_2 = 2\left(\cos \left(\dfrac{\pi}{6}\right) + i\sin \left(\dfrac{\pi}{6}\right)\right) = \sqrt{3} + i\text{;}\)\(~~\dfrac{z_1}{z_2}=8\left(\cos \left(\dfrac{\pi}{2}\right) + i\sin \left(\dfrac{\pi}{2}\right)\right) = 8i\)
27.
Answer.
\(z_1z_2 = 6\left(\cos \left(\dfrac{9\pi}{10}\right) + i\sin \left(\dfrac{9\pi}{10}\right)\right)\text{;}\) \(~~\dfrac{z_1}{z_2}=\dfrac{3}{2}\left(\cos \left(\dfrac{3\pi}{10}\right) + i\sin \left(\dfrac{3\pi}{10}\right)\right)\)
29.
Answer.
\(z_1z_2 = 8\text{;}\) \(~\dfrac{z_1}{z_2}=\dfrac{1}{2}\)
31.
Answer.
\(z_1z_2 = 4\sqrt{2}(\cos \dfrac{7\pi}{12} + i\sin \dfrac{7\pi}{12})\text{;}\) \(~~\dfrac{z_1}{z_2}=2\sqrt{2}(\cos \dfrac{13\pi}{12} + i\sin \dfrac{13\pi}{12})\)
33.
Answer.
\(-128-128i\)
35.
Answer.
\(-128-128\sqrt{3}i\)
37.
Answer.
\(512+512\sqrt{3}i\)
39.
Answer.
\(\dfrac{1}{4}+\dfrac{1}{4}i\)
41.
Answer.
\(\dfrac{-\sqrt{2}}{8}-\dfrac{\sqrt{6}}{8}i\)
43.
Answer.
- \(3(\cos \dfrac{\pi}{4} + i\sin \dfrac{\pi}{4})\text{,}\) \(~3(\cos \dfrac{3\pi}{4} + i\sin \dfrac{3\pi}{4})\)
- \(\dfrac{3}{\sqrt{2}}+\dfrac{3}{\sqrt{2}}i\text{,}\) \(~\dfrac{-3}{\sqrt{2}}-\dfrac{3}{\sqrt{2}}i\)
45.
Answer.
- \(2,~2\left(\cos \dfrac{2\pi}{5} + i\sin \dfrac{2\pi}{5}\right)\text{,}\) \(~2\left(\cos \dfrac{4\pi}{5} + i\sin \dfrac{4\pi}{5}\right)\) , \(~2\left(\cos \dfrac{6\pi}{5} + i\sin \dfrac{6\pi}{5}\right)\text{,}\) \(2\left(\cos \dfrac{8\pi}{5} + i\sin \dfrac{8\pi}{5}\right)\)
- \(2,~0.618+1.9i\text{,}\) \(-1.618+1.176i\text{,}\) \(-1.618-1.176i\text{,}\) \(0.618-1.902i\)
47.
Answer.
- \(4\left(\cos \dfrac{\pi}{18} + i\sin \dfrac{\pi}{18}\right)\text{,}\) \(~4\left(\cos \dfrac{13\pi}{18} + i\sin \dfrac{13\pi}{18}\right)\text{,}\) \(~4\left(\cos \dfrac{25\pi}{18} + i\sin \dfrac{25\pi}{18}\right)\)
- \(1.97+0.347i\text{,}\) \(~-1.286+1.532i\text{,}\) \(~-0.684-1.879i\)
49.
Answer.
\(\abs{z} = \abs{\cos (\theta) + i\sin (\theta)} = \sqrt{\cos^2(\theta) + \sin^2(\theta)} = 1\)
51.
Answer.
- \(\displaystyle 1,~(\cos \dfrac{2\pi}{3} + i\sin \dfrac{2\pi}{3}),~(\cos \dfrac{4\pi}{3} + i\sin \dfrac{4\pi}{3})\)
- \(\displaystyle 1,~i,~-1,~-i\)
- \(1,~(\cos \dfrac{2\pi}{5} + i\sin \dfrac{2\pi}{5}),~(\cos \dfrac{4\pi}{5} + i\sin \dfrac{4\pi}{5}),\) \((\cos \dfrac{6\pi}{5} + i\sin \dfrac{6\pi}{5}),~(\cos \dfrac{8\pi}{5} + i\sin \dfrac{8\pi}{5})\)
- \(1,~(\cos \dfrac{\pi}{3} + i\sin \dfrac{\pi}{3}),~(\cos \dfrac{2\pi}{3} + i\sin \dfrac{2\pi}{3}),~-1,\) \((\cos \dfrac{4\pi}{3} + i\sin \dfrac{4\pi}{3}),~(\cos \dfrac{5\pi}{3} + i\sin \dfrac{5\pi}{3})\)
53.
Answer.
\((\omega_k)^n = 1^n \left(\cos \left(n \cdot \dfrac{2\pi k}{n}\right) + i\sin \left(n \cdot \dfrac{2\pi k}{n}\right)\right) = 1(\cos 2\pi k + i\sin 2\pi k) = 1\)
55.
Answer.
\(8^{1/4}\left(\cos \left(\dfrac{3\pi}{8}\right) + i\sin \left(\dfrac{3\pi}{8}\right)\right)\text{,}\) \(~8^{1/4}\left(\cos \left(\dfrac{5\pi}{8}\right) + i\sin \left(\dfrac{5\pi}{8}\right)\right)\text{,}\) \(~8^{1/4}\left(\cos \left(\dfrac{11\pi}{8}\right) + i\sin \left(\dfrac{11\pi}{8}\right)\right)\text{,}\) \(~8^{1/4}\left(\cos \left(\dfrac{13\pi}{8}\right) + i\sin \left(\dfrac{13\pi}{8}\right)\right)\)
57.
Answer.
\(\sqrt{2}\text{,}\) \(~\sqrt{2}\left(\cos \left(\dfrac{\pi}{3}\right) + i\sin \left(\dfrac{\pi}{3}\right)\right)\text{,}\) \(~\sqrt{2}\left(\cos \left(\dfrac{2\pi}{3}\right) + i\sin \left(\dfrac{2\pi}{3}\right)\right)\text{,}\) \(~-\sqrt{2}\text{,}\) \(~\sqrt{2}\left(\cos \left(\dfrac{4\pi}{3}\right) + i\sin \left(\dfrac{4\pi}{3}\right)\right)\text{,}\) \(~\sqrt{2}\left(\cos \left(\dfrac{5\pi}{3}\right) + i\sin \left(\dfrac{5\pi}{3}\right)\right)\)
59.
Answer.
\(\sqrt{2}\left(\cos \left(\dfrac{\pi}{3}\right) + i\sin \left(\dfrac{\pi}{3}\right)\right)\text{,}\) \(~\sqrt{2}\left(\cos \left(\dfrac{2\pi}{3}\right) + i\sin \left(\dfrac{2\pi}{3}\right)\right)\text{,}\) \(~\sqrt{2}\left(\cos \left(\dfrac{4\pi}{3}\right) + i\sin \left(\dfrac{4\pi}{3}\right)\right)\text{,}\) \(~\sqrt{2}\left(\cos \left(\dfrac{5\pi}{3}\right) + i\sin \left(\dfrac{5\pi}{3}\right)\right)\)
61.
Answer.
- \(\displaystyle \cos^2 (\theta) - \sin^2 (\theta) +(2\sin (\theta) \cos (\theta))i\)
- \(\displaystyle \cos (2\theta) + i\sin (2\theta)\)
- \(\displaystyle \sin (2\theta) = 2\sin (\theta) \cos (\theta);~~\cos (2\theta) = \cos^2 (\theta) - \sin^2 (\theta)\)
63.
Answer.
- \(\displaystyle \dfrac{b}{a}\)
- \(\displaystyle \dfrac{-a}{b}\)
- \(-1\text{,}\) \(~\dfrac{\pi}{2}\)
65.
Answer.
- \(\displaystyle z_1z_2 = (ac-bd) + (ad+bc)i\)
- \(\displaystyle a=r\cos(\alpha),~b=r\sin(\alpha),~c=R\cos(\beta),~d=R\sin(\beta)\)
- \((ac-bd) + (ad+bc)i = (rR\cos(\alpha)\cos(\beta) - rR\sin(\alpha)\sin(\beta))\) \(+ (rR\cos(\alpha)\sin(\beta)+rR\sin(\alpha)\cos(\beta))i\)
- \(\displaystyle rR(\cos (\alpha+\beta) +i\sin (\alpha+\beta))\)
10.5 Chapter Summary and Review
Review Problems
1.
Answer.
3.
Answer.
5.
Answer.
\(\left(\dfrac{-\sqrt{2}}{2},\dfrac{-\sqrt{2}}{2}\right)\)
7.
Answer.
\((0.241, -3.391)\)
9.
Answer.
\((3\sqrt{2}, \dfrac{3\pi}{4})\)
11.
Answer.
\((\sqrt{29}, \tan^{-1}(\dfrac{-2}{5})+2\pi)\)
13.
Answer.
15.
Answer.
17.
Answer.
\(x^2+y^2=1\)
19.
Answer.
\(x^2+y^2=(2x+6)^2\)
21.
Answer.
\(r\cos(\theta)+r\sin(\theta)=2\)
23.
Answer.
\(\tan(\theta)=r\)
25.
Answer.
Circle of radius 3 centered at the origin
27.
Answer.
Circle of radius 3 centered at \((3,0)\)
29.
Answer.
\(r=4\)
31.
Answer.
\(r=4\cos(\theta)\)
33.
Answer.
\(\left(4, \dfrac{\pi}{6}\right)\text{,}\) \(~\left(4, \dfrac{5\pi}{6}\right)\)
35.
Answer.
\(\left(2\sqrt{2}, \dfrac{3\pi}{4}\right)\) and the pole
37.
Answer.
\(4-3i\)
39.
Answer.
\(-2+4i\)
41.
Answer.
- \(\displaystyle 1\)
- \(\displaystyle 1\)
43.
Answer.
- \(\displaystyle -44\)
- \(\displaystyle -44\)
45.
Answer.
\((2\pm i)^2-4(2\pm i)+5=(4\pm 4i-1)-(8 \pm 4i)+5=0\)
47.
Answer.
\(z^2+4z+5\)
49.
Answer.
\(s^2-10s+41\)
51.
Answer.
53.
Answer.
- \(\displaystyle -1-7i\)
- \(\displaystyle x^2+2x+50=0\)
55.
Answer.
- \(\displaystyle 3+\sqrt{2}i\)
- \(\displaystyle x^2-6x+11=0\)
57.
Answer.
\(5\sqrt{3}-5i\)
59.
Answer.
\(5+5i\)
61.
Answer.
\(3\sqrt{2}\left(\cos\left(\dfrac{7\pi}{4}\right)+ i\sin\left(\dfrac{7\pi}{4}\right)\right)\)
63.
Answer.
\(5(\cos (\pi) +i\sin (\pi))\)
65.
Answer.
\(2\left(\cos\left(\dfrac{4\pi}{3}\right)+i\sin\left(\dfrac{4\pi}{3}\right)\right)\)
67.
Answer.
\(\begin{aligned}[t] z_1z_2 \amp=16(\cos (\pi) +i\sin (\pi)) \\ \amp=-16,~\dfrac{z_1}{z_2} \\ \amp=4\left(\cos\left(\dfrac{-2\pi}{3}\right)+i\sin\left(\dfrac{-2\pi}{3}\right)\right) \\ \amp=-2-2\sqrt{3}i \end{aligned}\)
69.
Answer.
\(\begin{aligned}[t] z_1z_2\amp=\dfrac{5}{2}\left(\cos\left(\dfrac{-\pi}{3}\right)+i\sin\left(\dfrac{-\pi}{3}\right)\right) \\ \amp=\dfrac{5}{4}-\dfrac{5\sqrt{3}}{2}i\end{aligned},\) \(\begin{aligned}[t] \dfrac{z_1}{z_2} \amp=10\left(\cos\left(\dfrac{-5\pi}{6}\right)+i\sin\left(\dfrac{-5\pi}{6}\right)\right) \\ \amp=-5\sqrt{3}-5i \end{aligned}\)
71.
Answer.
\(1\)
73.
Answer.
\(\dfrac{-1}{100}\)
75.
Answer.
- \(-2\sqrt{2}+2\sqrt{2}i\text{,}\) \(~2\sqrt{2}-2\sqrt{2}i\)
77.
Answer.
- \(3i\text{,}\) \(~\dfrac{-3\sqrt{3}}{2}-\dfrac{3}{2}i\text{,}\) \(~\dfrac{3\sqrt{3}}{2}-\dfrac{3}{2}i\)
79.
Answer.
\(3(\cos\theta+i\sin \theta),\) for \(\theta=\dfrac{\pi}{6},~\) \(\dfrac{\pi}{2},~\) \(\dfrac{5\pi}{6},~\) \(\dfrac{7\pi}{6},~\) \(\dfrac{3\pi}{2},~\) \(\dfrac{11\pi}{6}\)
81.
Answer.
\(\sqrt{2}(\cos(\theta)+i\sin (\theta)),\) for \(\theta=\dfrac{\pi}{3},~\) \(\dfrac{2\pi}{3},~\) \(\dfrac{4\pi}{3},~\) \(\dfrac{5\pi}{3}\)