1.
What is the formula for the volume of a box?
Answer.
\(V=lwh\)
\(1^2\) | \(2^2\) | \(3^2\) | \(4^2\) | \(5^2\) | \(6^2\) | \(7^2\) | \(8^2\) | \(9^2\) | \(10^2\) |
\(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(1^3\) | \(2^3\) | \(3^3\) | \(4^3\) | \(5^3\) | \(6^3\) | \(7^3\) | \(8^3\) | \(9^3\) | \(10^3\) |
\(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(2^1\) | \(2^2\) | \(2^3\) | \(2^4\) | \(2^5\) | \(2^6\) | \(2^7\) | \(2^8\) | \(2^9\) | \(2^{10}\) |
\(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(3^1\) | \(3^2\) | \(3^3\) | \(3^4\) | \(3^5\) | \(3^6\) | \(3^7\) | \(3^8\) | \(3^9\) | \(3^{10}\) |
\(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(x\) | \(x+x\) | \(2x\) | \(x^2\) |
\(3\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(5\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(-4\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(-1\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(x\) | \(x \cdot x\) | \(2x\) | \(x^2\) |
\(4\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(6\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(-3\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(-1\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(x\) | \(x^2+x^2\) | \(x^4\) | \(2x^2\) |
\(2\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(3\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(-2\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(-1\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(x\) | \(x + x^2\) | \(x \cdot x^2\) | \(x^3\) |
\(1\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(4\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(-3\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(-1\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |