Each term has a factor of 2, so we begin by factoring out 2.
\begin{equation*}
98-28x^4+2x^8 = 2(49-14x^4+x^8)
\end{equation*}
The polynomial in parentheses has the form \((a-b)^2\text{,}\) with \(a=7\) and \(b=x^4\text{.}\) The middle term is
\begin{equation*}
-2ab=-2(7)(x^4)
\end{equation*}
We use equation (2) to write
\begin{align*}
a^2+2ab+b^2 \amp = (a-b)^2 \amp \amp \blert{\text{Replace}~a~\text{by}~7~\text{and}~b~ \text{by}~x^4.}\\
49-14x^4+x^8 \amp = (7-x^4)^2
\end{align*}
Thus,
\begin{equation*}
98-28x^4+2x^8 = 2(7-x^4)^2
\end{equation*}