Quadratic Equations.
A quadratic equation can be written in the standard form
\begin{equation*}
ax^2+bx+c=0
\end{equation*}
where \(a,~b,\) and \(c\) are constants, and \(a\) is not zero.
\(x\) | \(-3\) | \(-2\) | \(-1\) | \(0\) | \(1\) | \(2\) | \(3\) |
\(y\) | \(9\) | \(4\) | \(1\) | \(0\) | \(1\) | \(4\) | \(9\) |
\(x\) | \(-3\) | \(-2\) | \(-1\) | \(0\) | \(1\) | \(2\) | \(3\) |
\(y\) | \(5\) | \(0\) | \(-3\) | \(-4\) | \(-3\) | \(0\) | \(5\) |
\(x\) | \(-3\) | \(-2\) | \(-1\) | \(0\) | \(1\) | \(2\) | \(3\) |
\(y\) | \(13\) | \(3\) | \(-3\) | \(-5\) | \(-3\) | \(3\) | \(13\) |
\(x\) | \(y\) |
\(0\) | \(\hphantom{0000}\) |
\(1\) | \(\hphantom{0000}\) |
\(2\) | \(\hphantom{0000}\) |
\(3\) | \(\hphantom{0000}\) |
\(-1\) | \(\hphantom{0000}\) |
\(-2\) | \(\hphantom{0000}\) |
\(-3\) | \(\hphantom{0000}\) |
\(x\) | \(y\) |
\(0\) | \(\hphantom{0000}\) |
\(1\) | \(\hphantom{0000}\) |
\(2\) | \(\hphantom{0000}\) |
\(3\) | \(\hphantom{0000}\) |
\(-1\) | \(\hphantom{0000}\) |
\(-2\) | \(\hphantom{0000}\) |
\(-3\) | \(\hphantom{0000}\) |
\(x\) | \(-3\) | \(-2\) | \(-1\) | \(0\) | \(1\) | \(2\) | \(3\) |
\(y\) | \(\hphantom{00}\) | \(\hphantom{00}\) | \(\hphantom{00}\) | \(\hphantom{00}\) | \(\hphantom{00}\) | \(\hphantom{00}\) | \(\hphantom{00}\) |
\(x\) | \(-3\) | \(-2\) | \(-1\) | \(0\) | \(1\) | \(2\) | \(3\) |
\(y\) | \(\hphantom{00}\) | \(\hphantom{00}\) | \(\hphantom{00}\) | \(\hphantom{00}\) | \(\hphantom{00}\) | \(\hphantom{00}\) | \(\hphantom{00}\) |
\(x\) | \(-3\) | \(-2\) | \(-1\) | \(0\) | \(1\) | \(2\) | \(3\) |
\(y\) | \(5\) | \(0\) | \(-3\) | \(-4\) | \(-3\) | \(0\) | \(5\) |
\(x\) | \(-3\) | \(-2\) | \(-1\) | \(0\) | \(1\) | \(2\) | \(3\) |
\(y\) | \(\hphantom{00}\) | \(\hphantom{00}\) | \(\hphantom{00}\) | \(\hphantom{00}\) | \(\hphantom{00}\) | \(\hphantom{00}\) | \(\hphantom{00}\) |
\(x\) | \(-4\) | \(-2\) | \(-1\) | \(0\) | \(1\) | \(2\) | \(4\) |
\(y\) | \(\hphantom{00}\) | \(\hphantom{00}\) | \(\hphantom{00}\) | \(\hphantom{00}\) | \(\hphantom{00}\) | \(\hphantom{00}\) | \(\hphantom{00}\) |
\(x\) | \(-4\) | \(-2\) | \(-1\) | \(0\) | \(1\) | \(2\) | \(4\) |
\(y\) | \(4\) | \(1\) | \(0.25\) | \(0\) | \(0.25\) | \(1\) | \(4\) |
\(r\) | \(C\) |
\(0\) | \(\hphantom{0000}\) |
\(1\) | \(\hphantom{0000}\) |
\(2\) | \(\hphantom{0000}\) |
\(4\) | \(\hphantom{0000}\) |
\(6\) | \(\hphantom{0000}\) |
\(9\) | \(\hphantom{0000}\) |
\(10\) | \(\hphantom{0000}\) |
\(14\) | \(\hphantom{0000}\) |
\(r\) | \(C\) |
\(0\) | \(0\) |
\(1\) | \(0.25\) |
\(2\) | \(1\) |
\(4\) | \(4\) |
\(6\) | \(9\) |
\(9\) | \(20.25\) |
\(10\) | \(25\) |
\(14\) | \(49\) |
Velocity (kph) | Distance (meters) |
\(5\) | \(\hphantom{0000}\) |
\(10\) | \(\hphantom{0000}\) |
\(15\) | \(\hphantom{0000}\) |
\(20\) | \(\hphantom{0000}\) |
\(40\) | \(\hphantom{0000}\) |
\(60\) | \(\hphantom{0000}\) |
\(t\) | \(h\) |
\(0\) | \(\hphantom{0000}\) |
\(0.5\) | \(\hphantom{0000}\) |
\(1\) | \(\hphantom{0000}\) |
\(1.25\) | \(\hphantom{0000}\) |
\(1.5\) | \(\hphantom{0000}\) |
\(1.75\) | \(\hphantom{0000}\) |
\(2\) | \(\hphantom{0000}\) |
\(2.25\) | \(\hphantom{0000}\) |
\(2.5\) | \(\hphantom{0000}\) |