Look Ahead.
If we know two pieces of information about a line: its slope and its initial value or \(y\)-intercept, we can write its equation.
Time, \(x\) | 0 | 10 | 20 | 30 | 40 | 50 | 60 |
Temperature, \(y\) | 70 | 74 | 78 | 82 | 86 | 90 | 94 |
\(u\) | \(W\) | \(X\) | \(Y\) |
\(3\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(5\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(8\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(10\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(12\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(h\) | \(A\) | \(B\) | \(C\) |
\(3\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(5\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(8\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(10\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(16\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(x\) | \(-1\) | \(0\) | \(1\) | \(2\) | \(3\) |
\(y\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(x\) | \(-1\) | \(0\) | \(1\) | \(2\) | \(3\) |
\(y\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(x\) | \(-1\) | \(0\) | \(1\) | \(2\) | \(3\) |
\(y\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(x\) | \(-6\) | \(-4\) | \(-2\) | \(0\) | \(2\) |
\(y\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(x\) | \(-6\) | \(-4\) | \(-2\) | \(0\) | \(2\) |
\(y\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(x\) | \(-6\) | \(-4\) | \(-2\) | \(0\) | \(2\) |
\(y\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(x\) | \(-4\) | \(-2\) | \(0\) | \(2\) | \(4\) |
\(y\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(x\) | \(-4\) | \(-2\) | \(0\) | \(2\) | \(4\) |
\(y\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(x\) | \(-4\) | \(-2\) | \(0\) | \(2\) | \(4\) |
\(y\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(x\) | \(-6\) | \(-3\) | \(0\) | \(3\) | \(6\) |
\(y\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(x\) | \(-6\) | \(-3\) | \(0\) | \(3\) | \(6\) |
\(y\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(x\) | \(-6\) | \(-3\) | \(0\) | \(3\) | \(6\) |
\(y\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(x\) | \(0\) | \(\hphantom{0000}\) |
\(y\) | \(\hphantom{0000}\) | \(0\) |
\(x\) | \(0\) | \(\hphantom{0000}\) |
\(y\) | \(\hphantom{0000}\) | \(0\) |