Polynomial.
A polynomial is an algebraic expression with several terms. Each term is a power of a variable (or a product of powers) with a constant coefficient.
\(4x^3+2x^2-7x+5\) | \(\hphantom{0000}\) | \(\dfrac{1}{2}at^2+vt\) |
\(2a^2-6ab+3b^2\) | \(\hphantom{0000}\) | \(\pi r^2h\) |
\(~~~~~~~~4n^2+2n-5\) | \(\hphantom{0000}\) | \(~~~~~~~~~~4n^2+2n-5\) |
\(-~~\underline{(2n^2-3n-2)}\) | \(\blert{\rightarrow~~\text{Change signs of each term.}~~\rightarrow}\) | \(+~~~\underline{-2n^2+3n+2}\) |
\(\hphantom{0000}\) | \(\hphantom{0000}\) | \(~~~~~~~~~~2n^2+5n-3\) |
\(m\) | \(T_m\) | \(\dfrac{1}{3}m^3+\dfrac{1}{2}m^2+\dfrac{1}{6}m\) |
\(1\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(2\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(3\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(4\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(5\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(6\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(7\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(8\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(9\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(10\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
\(m\) | \(T_m\) | \(\dfrac{1}{3}m^3+\dfrac{1}{2}m^2+\dfrac{1}{6}m\) |
\(1\) | \(1\) | \(1\) |
\(2\) | \(5\) | \(5\) |
\(3\) | \(14\) | \(14\) |
\(4\) | \(30\) | \(30\) |
\(5\) | \(55\) | \(55\) |
\(6\) | \(91\) | \(91\) |
\(7\) | \(140\) | \(140\) |
\(8\) | \(204\) | \(204\) |
\(9\) | \(285\) | \(285\) |
\(10\) | \(385\) | \(385\) |