Example 7.20.
Simplify.
- \(\displaystyle \dfrac{a^5}{a^3}\)
- \(\displaystyle \dfrac{a^4}{a^8}\)
Solution.
- We first write the numerator and denominator in factored form. Then we divide any common factors from the numerator and denominator.\begin{equation*} \dfrac{a^5}{a^3} = \dfrac{\cancel{a}\cdot \cancel{a}\cdot \cancel{a}\cdot a\cdot a}{\cancel{a}\cdot \cancel{a}\cdot \cancel{a}} = \dfrac{a^2}{1} = a^2 \end{equation*}You may observe that the exponent of the quotient can be obtained by subtracting the exponent of the denominator from the exponent of the numerator. In other words,\begin{equation*} \dfrac{a^5}{a^3}= a^{5-3} = a^2 \end{equation*}
- In this quotient, the larger power occurs in the denominator.\begin{equation*} \dfrac{a^4}{a^8} = \dfrac{\cancel{a}\cdot \cancel{a}\cdot \cancel{a}\cdot \cancel{a}}{\cancel{a}\cdot \cancel{a}\cdot \cancel{a}\cdot \cancel{a}\cdot a\cdot a\cdot a \cdot a} = \dfrac{1}{a^4} \end{equation*}We see that we can subtract the exponent of the numerator from the exponent of the denominator. That is,\begin{equation*} \dfrac{a^4}{a^8}=\dfrac{1} {a^{8-4}} = \dfrac{1}{a^4} \end{equation*}